Group coloring via its geometric structures
Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2365 |
creator | Bello, Muhammed Ali, Nor Muhainiah Mohd |
description | Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups. |
doi_str_mv | 10.1063/5.0057313 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2552171093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552171093</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-59e9a7f8c0b86bda97a1ee965beb03e63b568cab186dabeebc0459f7084a8c483</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoOFYXvsGAO2XqvZPJ31KKVqHgRsFdSNJMSWknY5IRfHsr7erbHL4Dh5BbhDkCp49sDsAERXpGKmQMG8GRn5MKQHVN29GvS3KV8xagVULIijwsU5zG2sVdTGHY1D_B1KHkeuPj3pcUXJ1LmlyZks_X5KI3u-xvTjsjny_PH4vXZvW-fFs8rZoRKS0NU14Z0UsHVnK7NkoY9F5xZr0F6jm1jEtnLEq-NtZ766BjqhcgOyNdJ-mM3B1_xxS_J5-L3sYpDQelbhlrUSAoeqDuj1R2oZgS4qDHFPYm_WoE_R9DM32KQf8AOxpQyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2552171093</pqid></control><display><type>conference_proceeding</type><title>Group coloring via its geometric structures</title><source>AIP Journals Complete</source><creator>Bello, Muhammed ; Ali, Nor Muhainiah Mohd</creator><contributor>Hayotov, Abdullo R. ; Shadimetov, Kholmat M. ; Aloev, Rakhmatillo D. ; Khudoyberganov, Mirzoali U.</contributor><creatorcontrib>Bello, Muhammed ; Ali, Nor Muhainiah Mohd ; Hayotov, Abdullo R. ; Shadimetov, Kholmat M. ; Aloev, Rakhmatillo D. ; Khudoyberganov, Mirzoali U.</creatorcontrib><description>Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0057313</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Apexes ; Graph coloring ; Graph theory ; Group theory ; Vertex sets</subject><ispartof>AIP conference proceedings, 2021, Vol.2365 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0057313$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Hayotov, Abdullo R.</contributor><contributor>Shadimetov, Kholmat M.</contributor><contributor>Aloev, Rakhmatillo D.</contributor><contributor>Khudoyberganov, Mirzoali U.</contributor><creatorcontrib>Bello, Muhammed</creatorcontrib><creatorcontrib>Ali, Nor Muhainiah Mohd</creatorcontrib><title>Group coloring via its geometric structures</title><title>AIP conference proceedings</title><description>Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups.</description><subject>Apexes</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Group theory</subject><subject>Vertex sets</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KAzEURoMoOFYXvsGAO2XqvZPJ31KKVqHgRsFdSNJMSWknY5IRfHsr7erbHL4Dh5BbhDkCp49sDsAERXpGKmQMG8GRn5MKQHVN29GvS3KV8xagVULIijwsU5zG2sVdTGHY1D_B1KHkeuPj3pcUXJ1LmlyZks_X5KI3u-xvTjsjny_PH4vXZvW-fFs8rZoRKS0NU14Z0UsHVnK7NkoY9F5xZr0F6jm1jEtnLEq-NtZ766BjqhcgOyNdJ-mM3B1_xxS_J5-L3sYpDQelbhlrUSAoeqDuj1R2oZgS4qDHFPYm_WoE_R9DM32KQf8AOxpQyQ</recordid><startdate>20210716</startdate><enddate>20210716</enddate><creator>Bello, Muhammed</creator><creator>Ali, Nor Muhainiah Mohd</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210716</creationdate><title>Group coloring via its geometric structures</title><author>Bello, Muhammed ; Ali, Nor Muhainiah Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-59e9a7f8c0b86bda97a1ee965beb03e63b568cab186dabeebc0459f7084a8c483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Group theory</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello, Muhammed</creatorcontrib><creatorcontrib>Ali, Nor Muhainiah Mohd</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello, Muhammed</au><au>Ali, Nor Muhainiah Mohd</au><au>Hayotov, Abdullo R.</au><au>Shadimetov, Kholmat M.</au><au>Aloev, Rakhmatillo D.</au><au>Khudoyberganov, Mirzoali U.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Group coloring via its geometric structures</atitle><btitle>AIP conference proceedings</btitle><date>2021-07-16</date><risdate>2021</risdate><volume>2365</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057313</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2365 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2552171093 |
source | AIP Journals Complete |
subjects | Apexes Graph coloring Graph theory Group theory Vertex sets |
title | Group coloring via its geometric structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Group%20coloring%20via%20its%20geometric%20structures&rft.btitle=AIP%20conference%20proceedings&rft.au=Bello,%20Muhammed&rft.date=2021-07-16&rft.volume=2365&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0057313&rft_dat=%3Cproquest_scita%3E2552171093%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552171093&rft_id=info:pmid/&rfr_iscdi=true |