Group coloring via its geometric structures

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bello, Muhammed, Ali, Nor Muhainiah Mohd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2365
creator Bello, Muhammed
Ali, Nor Muhainiah Mohd
description Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups.
doi_str_mv 10.1063/5.0057313
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2552171093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552171093</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-59e9a7f8c0b86bda97a1ee965beb03e63b568cab186dabeebc0459f7084a8c483</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoOFYXvsGAO2XqvZPJ31KKVqHgRsFdSNJMSWknY5IRfHsr7erbHL4Dh5BbhDkCp49sDsAERXpGKmQMG8GRn5MKQHVN29GvS3KV8xagVULIijwsU5zG2sVdTGHY1D_B1KHkeuPj3pcUXJ1LmlyZks_X5KI3u-xvTjsjny_PH4vXZvW-fFs8rZoRKS0NU14Z0UsHVnK7NkoY9F5xZr0F6jm1jEtnLEq-NtZ766BjqhcgOyNdJ-mM3B1_xxS_J5-L3sYpDQelbhlrUSAoeqDuj1R2oZgS4qDHFPYm_WoE_R9DM32KQf8AOxpQyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2552171093</pqid></control><display><type>conference_proceeding</type><title>Group coloring via its geometric structures</title><source>AIP Journals Complete</source><creator>Bello, Muhammed ; Ali, Nor Muhainiah Mohd</creator><contributor>Hayotov, Abdullo R. ; Shadimetov, Kholmat M. ; Aloev, Rakhmatillo D. ; Khudoyberganov, Mirzoali U.</contributor><creatorcontrib>Bello, Muhammed ; Ali, Nor Muhainiah Mohd ; Hayotov, Abdullo R. ; Shadimetov, Kholmat M. ; Aloev, Rakhmatillo D. ; Khudoyberganov, Mirzoali U.</creatorcontrib><description>Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0057313</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Apexes ; Graph coloring ; Graph theory ; Group theory ; Vertex sets</subject><ispartof>AIP conference proceedings, 2021, Vol.2365 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0057313$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Hayotov, Abdullo R.</contributor><contributor>Shadimetov, Kholmat M.</contributor><contributor>Aloev, Rakhmatillo D.</contributor><contributor>Khudoyberganov, Mirzoali U.</contributor><creatorcontrib>Bello, Muhammed</creatorcontrib><creatorcontrib>Ali, Nor Muhainiah Mohd</creatorcontrib><title>Group coloring via its geometric structures</title><title>AIP conference proceedings</title><description>Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups.</description><subject>Apexes</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Group theory</subject><subject>Vertex sets</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KAzEURoMoOFYXvsGAO2XqvZPJ31KKVqHgRsFdSNJMSWknY5IRfHsr7erbHL4Dh5BbhDkCp49sDsAERXpGKmQMG8GRn5MKQHVN29GvS3KV8xagVULIijwsU5zG2sVdTGHY1D_B1KHkeuPj3pcUXJ1LmlyZks_X5KI3u-xvTjsjny_PH4vXZvW-fFs8rZoRKS0NU14Z0UsHVnK7NkoY9F5xZr0F6jm1jEtnLEq-NtZ766BjqhcgOyNdJ-mM3B1_xxS_J5-L3sYpDQelbhlrUSAoeqDuj1R2oZgS4qDHFPYm_WoE_R9DM32KQf8AOxpQyQ</recordid><startdate>20210716</startdate><enddate>20210716</enddate><creator>Bello, Muhammed</creator><creator>Ali, Nor Muhainiah Mohd</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210716</creationdate><title>Group coloring via its geometric structures</title><author>Bello, Muhammed ; Ali, Nor Muhainiah Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-59e9a7f8c0b86bda97a1ee965beb03e63b568cab186dabeebc0459f7084a8c483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Group theory</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello, Muhammed</creatorcontrib><creatorcontrib>Ali, Nor Muhainiah Mohd</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello, Muhammed</au><au>Ali, Nor Muhainiah Mohd</au><au>Hayotov, Abdullo R.</au><au>Shadimetov, Kholmat M.</au><au>Aloev, Rakhmatillo D.</au><au>Khudoyberganov, Mirzoali U.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Group coloring via its geometric structures</atitle><btitle>AIP conference proceedings</btitle><date>2021-07-16</date><risdate>2021</risdate><volume>2365</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). A vertex coloring of Γ is an assignment of colors to V (Γ), so that no any two adjacent vertices share the same color. Meanwhile an edge coloring of Γ is an assignment of colors to E(Γ), so that no any two incident edges share the same color. Let G be a finite group, an order product prime graph of G, is a graph Γopp(G), having the elements of G as its vertices and two vertices are adjacent if and only if the product of their order is a prime power. In this paper, the general structure of the order product prime graph is used to investigate the vertex chromatic number, the dominated chromatic number, the locating chromatic number and the edge chromatic number of the order product prime graph on cyclic groups and dihedral groups.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057313</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2365 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2552171093
source AIP Journals Complete
subjects Apexes
Graph coloring
Graph theory
Group theory
Vertex sets
title Group coloring via its geometric structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Group%20coloring%20via%20its%20geometric%20structures&rft.btitle=AIP%20conference%20proceedings&rft.au=Bello,%20Muhammed&rft.date=2021-07-16&rft.volume=2365&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0057313&rft_dat=%3Cproquest_scita%3E2552171093%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552171093&rft_id=info:pmid/&rfr_iscdi=true