Drivable Path Planning Using Hybrid Search Algorithm Based on E and Bernstein-Bézier Motion Primitives

This article proposes a hybrid path-planning algorithm, the HE* algorithm, which combines the discrete grid-based E* search and continuous Bernstein-Bézier (BB) motion primitives. Several researchers have addressed the smooth path planning problem and the sample-based integrated path planning techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-08, Vol.51 (8), p.4868-4882
Hauptverfasser: Klancar, Gregor, Seder, Marija, Blazic, Saso, Skrjanc, Igor, Petrovic, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4882
container_issue 8
container_start_page 4868
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 51
creator Klancar, Gregor
Seder, Marija
Blazic, Saso
Skrjanc, Igor
Petrovic, Ivan
description This article proposes a hybrid path-planning algorithm, the HE* algorithm, which combines the discrete grid-based E* search and continuous Bernstein-Bézier (BB) motion primitives. Several researchers have addressed the smooth path planning problem and the sample-based integrated path planning techniques. We believe that the main benefits of the proposed approach are: directly drivable path, no additional post-optimization tasks, reduced search branching, low computational complexity, and completeness guarantee. Several examples and comparisons with the state-of-the-art planners are provided to illustrate and evaluate the main advantages of the HE* algorithm. HE* yields a collision-safe and smooth path that is close to spatially optimal (the Euclidean shortest path) with a guaranteed continuity of curvature. Therefore, the path is easily drivable for a wheeled robot without any additional post-optimization and smoothing required. HE* is a two-stage algorithm which uses a direction-guiding heuristics computed by the E* search in the first stage, which improves the quality and reduces the complexity of the hybrid search in the second stage. In each iteration, the search is expanded by a set of BBs, the parameters of which adapt continuously according to the guiding heuristics. Completeness is guaranteed by relying on a complete node mechanism, which also provides an upper bound for the calculated path cost. A remarkable feature of HE* is that it produces good results even at coarse resolutions.
doi_str_mv 10.1109/TSMC.2019.2945110
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2552162876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8876884</ieee_id><sourcerecordid>2552162876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-46258c01c8ccd7f56134566a37266ad3b1e654f1fe20351ea89e375a38606f153</originalsourceid><addsrcrecordid>eNo9kM9uwjAMxqNpk4YYDzDtEmnnsvxp0vQIjI1JoCEB5yi0LgSVliUFib3RnmMvtlRMXGzL_vzZ-iH0SEmfUpK-LBezUZ8RmvZZGovQukEdRqWKGOPs9lpTeY963u8IIZQpyYnsoM2rsyezLgHPTbPF89JUla02eOXbODmvnc3xAozLtnhQbmpnm-0eD42HHNcVHmNT5XgIrvIN2Coa_v58W3B4Vjc2jOfO7m1jT-Af0F1hSg-9_9xFq7fxcjSJpp_vH6PBNMpYypsolkyojNBMZVmeFEJSHgspDU9YiDlfU5AiLmgBjHBBwagUeCIMV5LIggreRc8X34Orv47gG72rj64KJzUTIiBgKpFBRS-qzNXeOyj0IXxq3FlTolukukWqW6T6H2nYebrsWAC46lWwUyrmf695cWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552162876</pqid></control><display><type>article</type><title>Drivable Path Planning Using Hybrid Search Algorithm Based on E and Bernstein-Bézier Motion Primitives</title><source>IEEE Electronic Library (IEL)</source><creator>Klancar, Gregor ; Seder, Marija ; Blazic, Saso ; Skrjanc, Igor ; Petrovic, Ivan</creator><creatorcontrib>Klancar, Gregor ; Seder, Marija ; Blazic, Saso ; Skrjanc, Igor ; Petrovic, Ivan</creatorcontrib><description>This article proposes a hybrid path-planning algorithm, the HE* algorithm, which combines the discrete grid-based E* search and continuous Bernstein-Bézier (BB) motion primitives. Several researchers have addressed the smooth path planning problem and the sample-based integrated path planning techniques. We believe that the main benefits of the proposed approach are: directly drivable path, no additional post-optimization tasks, reduced search branching, low computational complexity, and completeness guarantee. Several examples and comparisons with the state-of-the-art planners are provided to illustrate and evaluate the main advantages of the HE* algorithm. HE* yields a collision-safe and smooth path that is close to spatially optimal (the Euclidean shortest path) with a guaranteed continuity of curvature. Therefore, the path is easily drivable for a wheeled robot without any additional post-optimization and smoothing required. HE* is a two-stage algorithm which uses a direction-guiding heuristics computed by the E* search in the first stage, which improves the quality and reduces the complexity of the hybrid search in the second stage. In each iteration, the search is expanded by a set of BBs, the parameters of which adapt continuously according to the guiding heuristics. Completeness is guaranteed by relying on a complete node mechanism, which also provides an upper bound for the calculated path cost. A remarkable feature of HE* is that it produces good results even at coarse resolutions.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2019.2945110</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Angular velocity ; Bernstein–Bézier (BB) curve ; Collision avoidance ; Completeness ; graph search algorithm ; hybrid planner ; Iterative methods ; Mathematical analysis ; Mobile robots ; motion primitives ; Optimization ; Path planning ; Planning ; Search algorithms ; Shortest-path problems ; Smoothing methods ; Splines (mathematics) ; Task complexity ; Upper bounds</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-08, Vol.51 (8), p.4868-4882</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-46258c01c8ccd7f56134566a37266ad3b1e654f1fe20351ea89e375a38606f153</citedby><cites>FETCH-LOGICAL-c293t-46258c01c8ccd7f56134566a37266ad3b1e654f1fe20351ea89e375a38606f153</cites><orcidid>0000-0002-1461-3321 ; 0000-0002-9347-8534 ; 0000-0001-9961-5627 ; 0000-0002-1418-255X ; 0000-0002-0502-5376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8876884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8876884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Klancar, Gregor</creatorcontrib><creatorcontrib>Seder, Marija</creatorcontrib><creatorcontrib>Blazic, Saso</creatorcontrib><creatorcontrib>Skrjanc, Igor</creatorcontrib><creatorcontrib>Petrovic, Ivan</creatorcontrib><title>Drivable Path Planning Using Hybrid Search Algorithm Based on E and Bernstein-Bézier Motion Primitives</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This article proposes a hybrid path-planning algorithm, the HE* algorithm, which combines the discrete grid-based E* search and continuous Bernstein-Bézier (BB) motion primitives. Several researchers have addressed the smooth path planning problem and the sample-based integrated path planning techniques. We believe that the main benefits of the proposed approach are: directly drivable path, no additional post-optimization tasks, reduced search branching, low computational complexity, and completeness guarantee. Several examples and comparisons with the state-of-the-art planners are provided to illustrate and evaluate the main advantages of the HE* algorithm. HE* yields a collision-safe and smooth path that is close to spatially optimal (the Euclidean shortest path) with a guaranteed continuity of curvature. Therefore, the path is easily drivable for a wheeled robot without any additional post-optimization and smoothing required. HE* is a two-stage algorithm which uses a direction-guiding heuristics computed by the E* search in the first stage, which improves the quality and reduces the complexity of the hybrid search in the second stage. In each iteration, the search is expanded by a set of BBs, the parameters of which adapt continuously according to the guiding heuristics. Completeness is guaranteed by relying on a complete node mechanism, which also provides an upper bound for the calculated path cost. A remarkable feature of HE* is that it produces good results even at coarse resolutions.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Bernstein–Bézier (BB) curve</subject><subject>Collision avoidance</subject><subject>Completeness</subject><subject>graph search algorithm</subject><subject>hybrid planner</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mobile robots</subject><subject>motion primitives</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Planning</subject><subject>Search algorithms</subject><subject>Shortest-path problems</subject><subject>Smoothing methods</subject><subject>Splines (mathematics)</subject><subject>Task complexity</subject><subject>Upper bounds</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9uwjAMxqNpk4YYDzDtEmnnsvxp0vQIjI1JoCEB5yi0LgSVliUFib3RnmMvtlRMXGzL_vzZ-iH0SEmfUpK-LBezUZ8RmvZZGovQukEdRqWKGOPs9lpTeY963u8IIZQpyYnsoM2rsyezLgHPTbPF89JUla02eOXbODmvnc3xAozLtnhQbmpnm-0eD42HHNcVHmNT5XgIrvIN2Coa_v58W3B4Vjc2jOfO7m1jT-Af0F1hSg-9_9xFq7fxcjSJpp_vH6PBNMpYypsolkyojNBMZVmeFEJSHgspDU9YiDlfU5AiLmgBjHBBwagUeCIMV5LIggreRc8X34Orv47gG72rj64KJzUTIiBgKpFBRS-qzNXeOyj0IXxq3FlTolukukWqW6T6H2nYebrsWAC46lWwUyrmf695cWg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Klancar, Gregor</creator><creator>Seder, Marija</creator><creator>Blazic, Saso</creator><creator>Skrjanc, Igor</creator><creator>Petrovic, Ivan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1461-3321</orcidid><orcidid>https://orcid.org/0000-0002-9347-8534</orcidid><orcidid>https://orcid.org/0000-0001-9961-5627</orcidid><orcidid>https://orcid.org/0000-0002-1418-255X</orcidid><orcidid>https://orcid.org/0000-0002-0502-5376</orcidid></search><sort><creationdate>20210801</creationdate><title>Drivable Path Planning Using Hybrid Search Algorithm Based on E and Bernstein-Bézier Motion Primitives</title><author>Klancar, Gregor ; Seder, Marija ; Blazic, Saso ; Skrjanc, Igor ; Petrovic, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-46258c01c8ccd7f56134566a37266ad3b1e654f1fe20351ea89e375a38606f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Bernstein–Bézier (BB) curve</topic><topic>Collision avoidance</topic><topic>Completeness</topic><topic>graph search algorithm</topic><topic>hybrid planner</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mobile robots</topic><topic>motion primitives</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Planning</topic><topic>Search algorithms</topic><topic>Shortest-path problems</topic><topic>Smoothing methods</topic><topic>Splines (mathematics)</topic><topic>Task complexity</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klancar, Gregor</creatorcontrib><creatorcontrib>Seder, Marija</creatorcontrib><creatorcontrib>Blazic, Saso</creatorcontrib><creatorcontrib>Skrjanc, Igor</creatorcontrib><creatorcontrib>Petrovic, Ivan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klancar, Gregor</au><au>Seder, Marija</au><au>Blazic, Saso</au><au>Skrjanc, Igor</au><au>Petrovic, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivable Path Planning Using Hybrid Search Algorithm Based on E and Bernstein-Bézier Motion Primitives</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>51</volume><issue>8</issue><spage>4868</spage><epage>4882</epage><pages>4868-4882</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This article proposes a hybrid path-planning algorithm, the HE* algorithm, which combines the discrete grid-based E* search and continuous Bernstein-Bézier (BB) motion primitives. Several researchers have addressed the smooth path planning problem and the sample-based integrated path planning techniques. We believe that the main benefits of the proposed approach are: directly drivable path, no additional post-optimization tasks, reduced search branching, low computational complexity, and completeness guarantee. Several examples and comparisons with the state-of-the-art planners are provided to illustrate and evaluate the main advantages of the HE* algorithm. HE* yields a collision-safe and smooth path that is close to spatially optimal (the Euclidean shortest path) with a guaranteed continuity of curvature. Therefore, the path is easily drivable for a wheeled robot without any additional post-optimization and smoothing required. HE* is a two-stage algorithm which uses a direction-guiding heuristics computed by the E* search in the first stage, which improves the quality and reduces the complexity of the hybrid search in the second stage. In each iteration, the search is expanded by a set of BBs, the parameters of which adapt continuously according to the guiding heuristics. Completeness is guaranteed by relying on a complete node mechanism, which also provides an upper bound for the calculated path cost. A remarkable feature of HE* is that it produces good results even at coarse resolutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2019.2945110</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1461-3321</orcidid><orcidid>https://orcid.org/0000-0002-9347-8534</orcidid><orcidid>https://orcid.org/0000-0001-9961-5627</orcidid><orcidid>https://orcid.org/0000-0002-1418-255X</orcidid><orcidid>https://orcid.org/0000-0002-0502-5376</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2021-08, Vol.51 (8), p.4868-4882
issn 2168-2216
2168-2232
language eng
recordid cdi_proquest_journals_2552162876
source IEEE Electronic Library (IEL)
subjects Algorithms
Angular velocity
Bernstein–Bézier (BB) curve
Collision avoidance
Completeness
graph search algorithm
hybrid planner
Iterative methods
Mathematical analysis
Mobile robots
motion primitives
Optimization
Path planning
Planning
Search algorithms
Shortest-path problems
Smoothing methods
Splines (mathematics)
Task complexity
Upper bounds
title Drivable Path Planning Using Hybrid Search Algorithm Based on E and Bernstein-Bézier Motion Primitives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivable%20Path%20Planning%20Using%20Hybrid%20Search%20Algorithm%20Based%20on%20E%20and%20Bernstein-B%C3%A9zier%20Motion%20Primitives&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Klancar,%20Gregor&rft.date=2021-08-01&rft.volume=51&rft.issue=8&rft.spage=4868&rft.epage=4882&rft.pages=4868-4882&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2019.2945110&rft_dat=%3Cproquest_RIE%3E2552162876%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552162876&rft_id=info:pmid/&rft_ieee_id=8876884&rfr_iscdi=true