DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar
We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.97495-97504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97504 |
---|---|
container_issue | |
container_start_page | 97495 |
container_title | IEEE access |
container_volume | 9 |
creator | Singer, Nina M. Asari, Vijayan K. |
description | We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d. |
doi_str_mv | 10.1109/ACCESS.2021.3094127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2552159772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9469802</ieee_id><doaj_id>oai_doaj_org_article_eddf0d1bf6ba4a13ac4afeb21fb16656</doaj_id><sourcerecordid>2552159772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</originalsourceid><addsrcrecordid>eNpNUcFuEzEQXSGQqEq_oBdLnBM89q4dc1vSAJFW6iEgcbPG9jhsSHeL7R74-7psVXUuM3p6782TXtNcA18DcPOp3253h8NacAFryU0LQr9pLgQos5KdVG9f3e-bq5xPvM6mQp2-aH7d9MPuwG7diXzJn1nPBkxHYgePZ2JfaPK_7zD9YTdYMFNhcU5sP-WCk68kOt7RVLCM88TGifWURjyzYQyYPjTvIp4zXT3vy-bn192P7ffVcPttv-2HlW_5pqwccG98iK1UABK00tKYoJwLrXLBCI8ORY0aEWTsOvDcbJw22vEgI6KWl81-8Q0znux9Gmvcf3bG0f4H5nS0mMroz2QphMgDuKgcttUPfYuRnIDoQKlOVa-Pi9d9mv8-UC72ND-kqca3ousEdEZrUVlyYfk055wovnwFbp8asUsj9qkR-9xIVV0vqpGIXhSmVWbDhXwEG8eGBQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552159772</pqid></control><display><type>article</type><title>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Singer, Nina M. ; Asari, Vijayan K.</creator><creatorcontrib>Singer, Nina M. ; Asari, Vijayan K.</creatorcontrib><description>We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3094127</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D data set ; aerial vision ; airborne system ; ALS ; benchmark data ; Benchmark testing ; Benchmarks ; data annotation ; Data collection ; Datasets ; Deep learning ; earth scan ; Image annotation ; Instance segmentation ; Labels ; Laser radar ; laser scan ; Lidar ; point cloud ; semantic segmentation ; Semantics ; Task analysis ; Three-dimensional displays ; Vegetation mapping</subject><ispartof>IEEE access, 2021, Vol.9, p.97495-97504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</citedby><cites>FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</cites><orcidid>0000-0002-3751-5492 ; 0000-0001-5916-6425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9469802$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Singer, Nina M.</creatorcontrib><creatorcontrib>Asari, Vijayan K.</creatorcontrib><title>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</title><title>IEEE access</title><addtitle>Access</addtitle><description>We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.</description><subject>3D data set</subject><subject>aerial vision</subject><subject>airborne system</subject><subject>ALS</subject><subject>benchmark data</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>data annotation</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>earth scan</subject><subject>Image annotation</subject><subject>Instance segmentation</subject><subject>Labels</subject><subject>Laser radar</subject><subject>laser scan</subject><subject>Lidar</subject><subject>point cloud</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Vegetation mapping</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuEzEQXSGQqEq_oBdLnBM89q4dc1vSAJFW6iEgcbPG9jhsSHeL7R74-7psVXUuM3p6782TXtNcA18DcPOp3253h8NacAFryU0LQr9pLgQos5KdVG9f3e-bq5xPvM6mQp2-aH7d9MPuwG7diXzJn1nPBkxHYgePZ2JfaPK_7zD9YTdYMFNhcU5sP-WCk68kOt7RVLCM88TGifWURjyzYQyYPjTvIp4zXT3vy-bn192P7ffVcPttv-2HlW_5pqwccG98iK1UABK00tKYoJwLrXLBCI8ORY0aEWTsOvDcbJw22vEgI6KWl81-8Q0znux9Gmvcf3bG0f4H5nS0mMroz2QphMgDuKgcttUPfYuRnIDoQKlOVa-Pi9d9mv8-UC72ND-kqca3ousEdEZrUVlyYfk055wovnwFbp8asUsj9qkR-9xIVV0vqpGIXhSmVWbDhXwEG8eGBQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Singer, Nina M.</creator><creator>Asari, Vijayan K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3751-5492</orcidid><orcidid>https://orcid.org/0000-0001-5916-6425</orcidid></search><sort><creationdate>2021</creationdate><title>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</title><author>Singer, Nina M. ; Asari, Vijayan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D data set</topic><topic>aerial vision</topic><topic>airborne system</topic><topic>ALS</topic><topic>benchmark data</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>data annotation</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>earth scan</topic><topic>Image annotation</topic><topic>Instance segmentation</topic><topic>Labels</topic><topic>Laser radar</topic><topic>laser scan</topic><topic>Lidar</topic><topic>point cloud</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singer, Nina M.</creatorcontrib><creatorcontrib>Asari, Vijayan K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singer, Nina M.</au><au>Asari, Vijayan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>97495</spage><epage>97504</epage><pages>97495-97504</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3094127</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3751-5492</orcidid><orcidid>https://orcid.org/0000-0001-5916-6425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.97495-97504 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2552159772 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | 3D data set aerial vision airborne system ALS benchmark data Benchmark testing Benchmarks data annotation Data collection Datasets Deep learning earth scan Image annotation Instance segmentation Labels Laser radar laser scan Lidar point cloud semantic segmentation Semantics Task analysis Three-dimensional displays Vegetation mapping |
title | DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DALES%20Objects:%20A%20Large%20Scale%20Benchmark%20Dataset%20for%20Instance%20Segmentation%20in%20Aerial%20Lidar&rft.jtitle=IEEE%20access&rft.au=Singer,%20Nina%20M.&rft.date=2021&rft.volume=9&rft.spage=97495&rft.epage=97504&rft.pages=97495-97504&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3094127&rft_dat=%3Cproquest_ieee_%3E2552159772%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552159772&rft_id=info:pmid/&rft_ieee_id=9469802&rft_doaj_id=oai_doaj_org_article_eddf0d1bf6ba4a13ac4afeb21fb16656&rfr_iscdi=true |