DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar

We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.97495-97504
Hauptverfasser: Singer, Nina M., Asari, Vijayan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97504
container_issue
container_start_page 97495
container_title IEEE access
container_volume 9
creator Singer, Nina M.
Asari, Vijayan K.
description We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.
doi_str_mv 10.1109/ACCESS.2021.3094127
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2552159772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9469802</ieee_id><doaj_id>oai_doaj_org_article_eddf0d1bf6ba4a13ac4afeb21fb16656</doaj_id><sourcerecordid>2552159772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</originalsourceid><addsrcrecordid>eNpNUcFuEzEQXSGQqEq_oBdLnBM89q4dc1vSAJFW6iEgcbPG9jhsSHeL7R74-7psVXUuM3p6782TXtNcA18DcPOp3253h8NacAFryU0LQr9pLgQos5KdVG9f3e-bq5xPvM6mQp2-aH7d9MPuwG7diXzJn1nPBkxHYgePZ2JfaPK_7zD9YTdYMFNhcU5sP-WCk68kOt7RVLCM88TGifWURjyzYQyYPjTvIp4zXT3vy-bn192P7ffVcPttv-2HlW_5pqwccG98iK1UABK00tKYoJwLrXLBCI8ORY0aEWTsOvDcbJw22vEgI6KWl81-8Q0znux9Gmvcf3bG0f4H5nS0mMroz2QphMgDuKgcttUPfYuRnIDoQKlOVa-Pi9d9mv8-UC72ND-kqca3ousEdEZrUVlyYfk055wovnwFbp8asUsj9qkR-9xIVV0vqpGIXhSmVWbDhXwEG8eGBQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552159772</pqid></control><display><type>article</type><title>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Singer, Nina M. ; Asari, Vijayan K.</creator><creatorcontrib>Singer, Nina M. ; Asari, Vijayan K.</creatorcontrib><description>We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3094127</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D data set ; aerial vision ; airborne system ; ALS ; benchmark data ; Benchmark testing ; Benchmarks ; data annotation ; Data collection ; Datasets ; Deep learning ; earth scan ; Image annotation ; Instance segmentation ; Labels ; Laser radar ; laser scan ; Lidar ; point cloud ; semantic segmentation ; Semantics ; Task analysis ; Three-dimensional displays ; Vegetation mapping</subject><ispartof>IEEE access, 2021, Vol.9, p.97495-97504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</citedby><cites>FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</cites><orcidid>0000-0002-3751-5492 ; 0000-0001-5916-6425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9469802$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Singer, Nina M.</creatorcontrib><creatorcontrib>Asari, Vijayan K.</creatorcontrib><title>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</title><title>IEEE access</title><addtitle>Access</addtitle><description>We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.</description><subject>3D data set</subject><subject>aerial vision</subject><subject>airborne system</subject><subject>ALS</subject><subject>benchmark data</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>data annotation</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>earth scan</subject><subject>Image annotation</subject><subject>Instance segmentation</subject><subject>Labels</subject><subject>Laser radar</subject><subject>laser scan</subject><subject>Lidar</subject><subject>point cloud</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Vegetation mapping</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuEzEQXSGQqEq_oBdLnBM89q4dc1vSAJFW6iEgcbPG9jhsSHeL7R74-7psVXUuM3p6782TXtNcA18DcPOp3253h8NacAFryU0LQr9pLgQos5KdVG9f3e-bq5xPvM6mQp2-aH7d9MPuwG7diXzJn1nPBkxHYgePZ2JfaPK_7zD9YTdYMFNhcU5sP-WCk68kOt7RVLCM88TGifWURjyzYQyYPjTvIp4zXT3vy-bn192P7ffVcPttv-2HlW_5pqwccG98iK1UABK00tKYoJwLrXLBCI8ORY0aEWTsOvDcbJw22vEgI6KWl81-8Q0znux9Gmvcf3bG0f4H5nS0mMroz2QphMgDuKgcttUPfYuRnIDoQKlOVa-Pi9d9mv8-UC72ND-kqca3ousEdEZrUVlyYfk055wovnwFbp8asUsj9qkR-9xIVV0vqpGIXhSmVWbDhXwEG8eGBQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Singer, Nina M.</creator><creator>Asari, Vijayan K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3751-5492</orcidid><orcidid>https://orcid.org/0000-0001-5916-6425</orcidid></search><sort><creationdate>2021</creationdate><title>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</title><author>Singer, Nina M. ; Asari, Vijayan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b10c9cdf4361131767399d6bbd46bd92caba2695fa13f551c098b797b0d3faa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D data set</topic><topic>aerial vision</topic><topic>airborne system</topic><topic>ALS</topic><topic>benchmark data</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>data annotation</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>earth scan</topic><topic>Image annotation</topic><topic>Instance segmentation</topic><topic>Labels</topic><topic>Laser radar</topic><topic>laser scan</topic><topic>Lidar</topic><topic>point cloud</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singer, Nina M.</creatorcontrib><creatorcontrib>Asari, Vijayan K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singer, Nina M.</au><au>Asari, Vijayan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>97495</spage><epage>97504</epage><pages>97495-97504</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al. , 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3094127</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3751-5492</orcidid><orcidid>https://orcid.org/0000-0001-5916-6425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.97495-97504
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2552159772
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 3D data set
aerial vision
airborne system
ALS
benchmark data
Benchmark testing
Benchmarks
data annotation
Data collection
Datasets
Deep learning
earth scan
Image annotation
Instance segmentation
Labels
Laser radar
laser scan
Lidar
point cloud
semantic segmentation
Semantics
Task analysis
Three-dimensional displays
Vegetation mapping
title DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DALES%20Objects:%20A%20Large%20Scale%20Benchmark%20Dataset%20for%20Instance%20Segmentation%20in%20Aerial%20Lidar&rft.jtitle=IEEE%20access&rft.au=Singer,%20Nina%20M.&rft.date=2021&rft.volume=9&rft.spage=97495&rft.epage=97504&rft.pages=97495-97504&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3094127&rft_dat=%3Cproquest_ieee_%3E2552159772%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552159772&rft_id=info:pmid/&rft_ieee_id=9469802&rft_doaj_id=oai_doaj_org_article_eddf0d1bf6ba4a13ac4afeb21fb16656&rfr_iscdi=true