Adaptive robotic manufacturing using higher order knowledge systems

Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation in construction 2021-07, Vol.127, p.103702, Article 103702
Hauptverfasser: Neythalath, Narendrakrishnan, Søndergaard, Asbjørn, Bærentzen, Jakob Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103702
container_title Automation in construction
container_volume 127
creator Neythalath, Narendrakrishnan
Søndergaard, Asbjørn
Bærentzen, Jakob Andreas
description Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time. •Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy.
doi_str_mv 10.1016/j.autcon.2021.103702
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552120143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926580521001539</els_id><sourcerecordid>2552120143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDThU4tzhJE2bXpCmiX_SJC5wjtLE3VK2ZiTpEN-eTuXMxZbs957lHyG3FBYUaHnfLfSQjO8XDBgdR7wCdkZmVFYsr2RNz8kMalbmQoK4JFcxdgBQQVnPyGpp9SG5I2bBNz45k-11P7TapCG4fpMN8VS3brPFkPlgx_rZ--8d2g1m8Scm3MdrctHqXcSbvz4nH0-P76uXfP32_LparnPDJaSc2kYip1jTQkBRtlzaojS0qmnVaMHNuKyBayFLi9QIbIHXvJHG1LxlRhR8Tu6m3EPwXwPGpDo_hH48qZgQjDKgBR9VxaQywccYsFWH4PY6_CgK6oRLdWrCpU641IRrtD1MNhw_ODoMKhqHvUHrApqkrHf_B_wCwr51Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552120143</pqid></control><display><type>article</type><title>Adaptive robotic manufacturing using higher order knowledge systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Neythalath, Narendrakrishnan ; Søndergaard, Asbjørn ; Bærentzen, Jakob Andreas</creator><creatorcontrib>Neythalath, Narendrakrishnan ; Søndergaard, Asbjørn ; Bærentzen, Jakob Andreas</creatorcontrib><description>Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time. •Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy.</description><identifier>ISSN: 0926-5805</identifier><identifier>EISSN: 1872-7891</identifier><identifier>DOI: 10.1016/j.autcon.2021.103702</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Automation ; Construction 4.0 ; Construction industry ; Industrial applications ; Industrial research ; Industrial robots ; Multilayers ; Process optimization ; Robot control ; Robotics</subject><ispartof>Automation in construction, 2021-07, Vol.127, p.103702, Article 103702</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</citedby><cites>FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.autcon.2021.103702$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Neythalath, Narendrakrishnan</creatorcontrib><creatorcontrib>Søndergaard, Asbjørn</creatorcontrib><creatorcontrib>Bærentzen, Jakob Andreas</creatorcontrib><title>Adaptive robotic manufacturing using higher order knowledge systems</title><title>Automation in construction</title><description>Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time. •Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy.</description><subject>Automation</subject><subject>Construction 4.0</subject><subject>Construction industry</subject><subject>Industrial applications</subject><subject>Industrial research</subject><subject>Industrial robots</subject><subject>Multilayers</subject><subject>Process optimization</subject><subject>Robot control</subject><subject>Robotics</subject><issn>0926-5805</issn><issn>1872-7891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwDThU4tzhJE2bXpCmiX_SJC5wjtLE3VK2ZiTpEN-eTuXMxZbs957lHyG3FBYUaHnfLfSQjO8XDBgdR7wCdkZmVFYsr2RNz8kMalbmQoK4JFcxdgBQQVnPyGpp9SG5I2bBNz45k-11P7TapCG4fpMN8VS3brPFkPlgx_rZ--8d2g1m8Scm3MdrctHqXcSbvz4nH0-P76uXfP32_LparnPDJaSc2kYip1jTQkBRtlzaojS0qmnVaMHNuKyBayFLi9QIbIHXvJHG1LxlRhR8Tu6m3EPwXwPGpDo_hH48qZgQjDKgBR9VxaQywccYsFWH4PY6_CgK6oRLdWrCpU641IRrtD1MNhw_ODoMKhqHvUHrApqkrHf_B_wCwr51Cw</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Neythalath, Narendrakrishnan</creator><creator>Søndergaard, Asbjørn</creator><creator>Bærentzen, Jakob Andreas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202107</creationdate><title>Adaptive robotic manufacturing using higher order knowledge systems</title><author>Neythalath, Narendrakrishnan ; Søndergaard, Asbjørn ; Bærentzen, Jakob Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Construction 4.0</topic><topic>Construction industry</topic><topic>Industrial applications</topic><topic>Industrial research</topic><topic>Industrial robots</topic><topic>Multilayers</topic><topic>Process optimization</topic><topic>Robot control</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neythalath, Narendrakrishnan</creatorcontrib><creatorcontrib>Søndergaard, Asbjørn</creatorcontrib><creatorcontrib>Bærentzen, Jakob Andreas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation in construction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neythalath, Narendrakrishnan</au><au>Søndergaard, Asbjørn</au><au>Bærentzen, Jakob Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive robotic manufacturing using higher order knowledge systems</atitle><jtitle>Automation in construction</jtitle><date>2021-07</date><risdate>2021</risdate><volume>127</volume><spage>103702</spage><pages>103702-</pages><artnum>103702</artnum><issn>0926-5805</issn><eissn>1872-7891</eissn><abstract>Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time. •Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.autcon.2021.103702</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-5805
ispartof Automation in construction, 2021-07, Vol.127, p.103702, Article 103702
issn 0926-5805
1872-7891
language eng
recordid cdi_proquest_journals_2552120143
source Access via ScienceDirect (Elsevier)
subjects Automation
Construction 4.0
Construction industry
Industrial applications
Industrial research
Industrial robots
Multilayers
Process optimization
Robot control
Robotics
title Adaptive robotic manufacturing using higher order knowledge systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20robotic%20manufacturing%20using%20higher%20order%20knowledge%20systems&rft.jtitle=Automation%20in%20construction&rft.au=Neythalath,%20Narendrakrishnan&rft.date=2021-07&rft.volume=127&rft.spage=103702&rft.pages=103702-&rft.artnum=103702&rft.issn=0926-5805&rft.eissn=1872-7891&rft_id=info:doi/10.1016/j.autcon.2021.103702&rft_dat=%3Cproquest_cross%3E2552120143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552120143&rft_id=info:pmid/&rft_els_id=S0926580521001539&rfr_iscdi=true