Adaptive robotic manufacturing using higher order knowledge systems
Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to incre...
Gespeichert in:
Veröffentlicht in: | Automation in construction 2021-07, Vol.127, p.103702, Article 103702 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103702 |
container_title | Automation in construction |
container_volume | 127 |
creator | Neythalath, Narendrakrishnan Søndergaard, Asbjørn Bærentzen, Jakob Andreas |
description | Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time.
•Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy. |
doi_str_mv | 10.1016/j.autcon.2021.103702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552120143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926580521001539</els_id><sourcerecordid>2552120143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDThU4tzhJE2bXpCmiX_SJC5wjtLE3VK2ZiTpEN-eTuXMxZbs957lHyG3FBYUaHnfLfSQjO8XDBgdR7wCdkZmVFYsr2RNz8kMalbmQoK4JFcxdgBQQVnPyGpp9SG5I2bBNz45k-11P7TapCG4fpMN8VS3brPFkPlgx_rZ--8d2g1m8Scm3MdrctHqXcSbvz4nH0-P76uXfP32_LparnPDJaSc2kYip1jTQkBRtlzaojS0qmnVaMHNuKyBayFLi9QIbIHXvJHG1LxlRhR8Tu6m3EPwXwPGpDo_hH48qZgQjDKgBR9VxaQywccYsFWH4PY6_CgK6oRLdWrCpU641IRrtD1MNhw_ODoMKhqHvUHrApqkrHf_B_wCwr51Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552120143</pqid></control><display><type>article</type><title>Adaptive robotic manufacturing using higher order knowledge systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Neythalath, Narendrakrishnan ; Søndergaard, Asbjørn ; Bærentzen, Jakob Andreas</creator><creatorcontrib>Neythalath, Narendrakrishnan ; Søndergaard, Asbjørn ; Bærentzen, Jakob Andreas</creatorcontrib><description>Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time.
•Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy.</description><identifier>ISSN: 0926-5805</identifier><identifier>EISSN: 1872-7891</identifier><identifier>DOI: 10.1016/j.autcon.2021.103702</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Automation ; Construction 4.0 ; Construction industry ; Industrial applications ; Industrial research ; Industrial robots ; Multilayers ; Process optimization ; Robot control ; Robotics</subject><ispartof>Automation in construction, 2021-07, Vol.127, p.103702, Article 103702</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</citedby><cites>FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.autcon.2021.103702$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Neythalath, Narendrakrishnan</creatorcontrib><creatorcontrib>Søndergaard, Asbjørn</creatorcontrib><creatorcontrib>Bærentzen, Jakob Andreas</creatorcontrib><title>Adaptive robotic manufacturing using higher order knowledge systems</title><title>Automation in construction</title><description>Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time.
•Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy.</description><subject>Automation</subject><subject>Construction 4.0</subject><subject>Construction industry</subject><subject>Industrial applications</subject><subject>Industrial research</subject><subject>Industrial robots</subject><subject>Multilayers</subject><subject>Process optimization</subject><subject>Robot control</subject><subject>Robotics</subject><issn>0926-5805</issn><issn>1872-7891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwDThU4tzhJE2bXpCmiX_SJC5wjtLE3VK2ZiTpEN-eTuXMxZbs957lHyG3FBYUaHnfLfSQjO8XDBgdR7wCdkZmVFYsr2RNz8kMalbmQoK4JFcxdgBQQVnPyGpp9SG5I2bBNz45k-11P7TapCG4fpMN8VS3brPFkPlgx_rZ--8d2g1m8Scm3MdrctHqXcSbvz4nH0-P76uXfP32_LparnPDJaSc2kYip1jTQkBRtlzaojS0qmnVaMHNuKyBayFLi9QIbIHXvJHG1LxlRhR8Tu6m3EPwXwPGpDo_hH48qZgQjDKgBR9VxaQywccYsFWH4PY6_CgK6oRLdWrCpU641IRrtD1MNhw_ODoMKhqHvUHrApqkrHf_B_wCwr51Cw</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Neythalath, Narendrakrishnan</creator><creator>Søndergaard, Asbjørn</creator><creator>Bærentzen, Jakob Andreas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202107</creationdate><title>Adaptive robotic manufacturing using higher order knowledge systems</title><author>Neythalath, Narendrakrishnan ; Søndergaard, Asbjørn ; Bærentzen, Jakob Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1db8e31e9145046f38d46c17917ba53c8e3903a586de1c5ef0393b8cc93f2c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Construction 4.0</topic><topic>Construction industry</topic><topic>Industrial applications</topic><topic>Industrial research</topic><topic>Industrial robots</topic><topic>Multilayers</topic><topic>Process optimization</topic><topic>Robot control</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neythalath, Narendrakrishnan</creatorcontrib><creatorcontrib>Søndergaard, Asbjørn</creatorcontrib><creatorcontrib>Bærentzen, Jakob Andreas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation in construction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neythalath, Narendrakrishnan</au><au>Søndergaard, Asbjørn</au><au>Bærentzen, Jakob Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive robotic manufacturing using higher order knowledge systems</atitle><jtitle>Automation in construction</jtitle><date>2021-07</date><risdate>2021</risdate><volume>127</volume><spage>103702</spage><pages>103702-</pages><artnum>103702</artnum><issn>0926-5805</issn><eissn>1872-7891</eissn><abstract>Despite a well-understood potential to increase productivity of the global construction industry and sustained, international research efforts in recent years, wide-scale adoption of robotic technology currently remains elusive in the industry. As part of a larger industrial research effort to increase the efficiency of automation technologies within construction, this paper proposes a novel multi-layered knowledge encapsulation model to enable low-cost development of highly diverse robotic control applications within a parametric manufacturing paradigm. The effectiveness of proposed theoretical framework has been validated by developing multiple industrial applications and resulted in almost 40% reduction in development time.
•Process innovation and optimization.•Affordable robotic solutions for construction.•Construction 4.0 strategy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.autcon.2021.103702</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-5805 |
ispartof | Automation in construction, 2021-07, Vol.127, p.103702, Article 103702 |
issn | 0926-5805 1872-7891 |
language | eng |
recordid | cdi_proquest_journals_2552120143 |
source | Access via ScienceDirect (Elsevier) |
subjects | Automation Construction 4.0 Construction industry Industrial applications Industrial research Industrial robots Multilayers Process optimization Robot control Robotics |
title | Adaptive robotic manufacturing using higher order knowledge systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20robotic%20manufacturing%20using%20higher%20order%20knowledge%20systems&rft.jtitle=Automation%20in%20construction&rft.au=Neythalath,%20Narendrakrishnan&rft.date=2021-07&rft.volume=127&rft.spage=103702&rft.pages=103702-&rft.artnum=103702&rft.issn=0926-5805&rft.eissn=1872-7891&rft_id=info:doi/10.1016/j.autcon.2021.103702&rft_dat=%3Cproquest_cross%3E2552120143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552120143&rft_id=info:pmid/&rft_els_id=S0926580521001539&rfr_iscdi=true |