Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs
In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems;...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2021-07, Vol.168, p.112402, Article 112402 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112402 |
container_title | Fusion engineering and design |
container_volume | 168 |
creator | Harb, M. Park, J.H. Leichtle, D. Martins, J.P. Kim, B.Y. van der Laan, J.G. Bergman, J. |
description | In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%. |
doi_str_mv | 10.1016/j.fusengdes.2021.112402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552119978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379621001782</els_id><sourcerecordid>2552119978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</originalsourceid><addsrcrecordid>eNqFUF1LxDAQDKLg-fEbDPjcMx9t0zyq-AWioudzaJPtmeNMarYV_Pe2VnwVFnZZZoaZIeSEsyVnvDzbLNsBIawd4FIwwZeci5yJHbLglZKZ4rrcJQumBcuk0uU-OUDcMMbVOAsSHmDoUwzeIq1Dvf1CPx2O1oiA-A6hp7Gl-OZh63xY09j1Pgacnp3vgLYxAfY_lAsfZ1z2tB3WdDTk12EC0LvV1TNdXbzgEdlr6y3C8e8-JK_XV6vL2-z-8ebu8vw-szKXfWZtIaW1qiobVxZ1k2vJqlo3LrcVNJa1kjGoWKOaRhegWqGdkFaL3LrWlgrkITmddbsUP4bRoNnEIY350IiiEJxrraoRpWaUTRExQWu65N_r9GU4M1O5ZmP-yjVTuWYud2Sez0wYQ3x6SAath2DB-QS2Ny76fzW-ASB5iK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552119978</pqid></control><display><type>article</type><title>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</title><source>Elsevier ScienceDirect Journals</source><creator>Harb, M. ; Park, J.H. ; Leichtle, D. ; Martins, J.P. ; Kim, B.Y. ; van der Laan, J.G. ; Bergman, J.</creator><creatorcontrib>Harb, M. ; Park, J.H. ; Leichtle, D. ; Martins, J.P. ; Kim, B.Y. ; van der Laan, J.G. ; Bergman, J.</creatorcontrib><description>In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2021.112402</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Dosage ; ITER ; Neutron flux ; Neutronics ; Pipes ; Plates ; Redesign ; Shielding ; Shutdown dose rate ; Shutdowns ; Si Dose ; TBM ; Tritium</subject><ispartof>Fusion engineering and design, 2021-07, Vol.168, p.112402, Article 112402</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</citedby><cites>FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</cites><orcidid>0000-0002-0037-9087 ; 0000-0001-9342-1629 ; 0000-0003-2269-3816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379621001782$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Harb, M.</creatorcontrib><creatorcontrib>Park, J.H.</creatorcontrib><creatorcontrib>Leichtle, D.</creatorcontrib><creatorcontrib>Martins, J.P.</creatorcontrib><creatorcontrib>Kim, B.Y.</creatorcontrib><creatorcontrib>van der Laan, J.G.</creatorcontrib><creatorcontrib>Bergman, J.</creatorcontrib><title>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</title><title>Fusion engineering and design</title><description>In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%.</description><subject>Dosage</subject><subject>ITER</subject><subject>Neutron flux</subject><subject>Neutronics</subject><subject>Pipes</subject><subject>Plates</subject><subject>Redesign</subject><subject>Shielding</subject><subject>Shutdown dose rate</subject><subject>Shutdowns</subject><subject>Si Dose</subject><subject>TBM</subject><subject>Tritium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LxDAQDKLg-fEbDPjcMx9t0zyq-AWioudzaJPtmeNMarYV_Pe2VnwVFnZZZoaZIeSEsyVnvDzbLNsBIawd4FIwwZeci5yJHbLglZKZ4rrcJQumBcuk0uU-OUDcMMbVOAsSHmDoUwzeIq1Dvf1CPx2O1oiA-A6hp7Gl-OZh63xY09j1Pgacnp3vgLYxAfY_lAsfZ1z2tB3WdDTk12EC0LvV1TNdXbzgEdlr6y3C8e8-JK_XV6vL2-z-8ebu8vw-szKXfWZtIaW1qiobVxZ1k2vJqlo3LrcVNJa1kjGoWKOaRhegWqGdkFaL3LrWlgrkITmddbsUP4bRoNnEIY350IiiEJxrraoRpWaUTRExQWu65N_r9GU4M1O5ZmP-yjVTuWYud2Sez0wYQ3x6SAath2DB-QS2Ny76fzW-ASB5iK4</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Harb, M.</creator><creator>Park, J.H.</creator><creator>Leichtle, D.</creator><creator>Martins, J.P.</creator><creator>Kim, B.Y.</creator><creator>van der Laan, J.G.</creator><creator>Bergman, J.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0037-9087</orcidid><orcidid>https://orcid.org/0000-0001-9342-1629</orcidid><orcidid>https://orcid.org/0000-0003-2269-3816</orcidid></search><sort><creationdate>202107</creationdate><title>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</title><author>Harb, M. ; Park, J.H. ; Leichtle, D. ; Martins, J.P. ; Kim, B.Y. ; van der Laan, J.G. ; Bergman, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dosage</topic><topic>ITER</topic><topic>Neutron flux</topic><topic>Neutronics</topic><topic>Pipes</topic><topic>Plates</topic><topic>Redesign</topic><topic>Shielding</topic><topic>Shutdown dose rate</topic><topic>Shutdowns</topic><topic>Si Dose</topic><topic>TBM</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harb, M.</creatorcontrib><creatorcontrib>Park, J.H.</creatorcontrib><creatorcontrib>Leichtle, D.</creatorcontrib><creatorcontrib>Martins, J.P.</creatorcontrib><creatorcontrib>Kim, B.Y.</creatorcontrib><creatorcontrib>van der Laan, J.G.</creatorcontrib><creatorcontrib>Bergman, J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harb, M.</au><au>Park, J.H.</au><au>Leichtle, D.</au><au>Martins, J.P.</au><au>Kim, B.Y.</au><au>van der Laan, J.G.</au><au>Bergman, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</atitle><jtitle>Fusion engineering and design</jtitle><date>2021-07</date><risdate>2021</risdate><volume>168</volume><spage>112402</spage><pages>112402-</pages><artnum>112402</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2021.112402</doi><orcidid>https://orcid.org/0000-0002-0037-9087</orcidid><orcidid>https://orcid.org/0000-0001-9342-1629</orcidid><orcidid>https://orcid.org/0000-0003-2269-3816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2021-07, Vol.168, p.112402, Article 112402 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_journals_2552119978 |
source | Elsevier ScienceDirect Journals |
subjects | Dosage ITER Neutron flux Neutronics Pipes Plates Redesign Shielding Shutdown dose rate Shutdowns Si Dose TBM Tritium |
title | Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutronics%20analysis%20and%20assessment%20of%20shielding%20options%20of%20pipe%20forest%20and%20Bioshield-Plug%20design%20for%20ITER%20TBSs&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Harb,%20M.&rft.date=2021-07&rft.volume=168&rft.spage=112402&rft.pages=112402-&rft.artnum=112402&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2021.112402&rft_dat=%3Cproquest_cross%3E2552119978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552119978&rft_id=info:pmid/&rft_els_id=S0920379621001782&rfr_iscdi=true |