Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs

In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2021-07, Vol.168, p.112402, Article 112402
Hauptverfasser: Harb, M., Park, J.H., Leichtle, D., Martins, J.P., Kim, B.Y., van der Laan, J.G., Bergman, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112402
container_title Fusion engineering and design
container_volume 168
creator Harb, M.
Park, J.H.
Leichtle, D.
Martins, J.P.
Kim, B.Y.
van der Laan, J.G.
Bergman, J.
description In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%.
doi_str_mv 10.1016/j.fusengdes.2021.112402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552119978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379621001782</els_id><sourcerecordid>2552119978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</originalsourceid><addsrcrecordid>eNqFUF1LxDAQDKLg-fEbDPjcMx9t0zyq-AWioudzaJPtmeNMarYV_Pe2VnwVFnZZZoaZIeSEsyVnvDzbLNsBIawd4FIwwZeci5yJHbLglZKZ4rrcJQumBcuk0uU-OUDcMMbVOAsSHmDoUwzeIq1Dvf1CPx2O1oiA-A6hp7Gl-OZh63xY09j1Pgacnp3vgLYxAfY_lAsfZ1z2tB3WdDTk12EC0LvV1TNdXbzgEdlr6y3C8e8-JK_XV6vL2-z-8ebu8vw-szKXfWZtIaW1qiobVxZ1k2vJqlo3LrcVNJa1kjGoWKOaRhegWqGdkFaL3LrWlgrkITmddbsUP4bRoNnEIY350IiiEJxrraoRpWaUTRExQWu65N_r9GU4M1O5ZmP-yjVTuWYud2Sez0wYQ3x6SAath2DB-QS2Ny76fzW-ASB5iK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552119978</pqid></control><display><type>article</type><title>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</title><source>Elsevier ScienceDirect Journals</source><creator>Harb, M. ; Park, J.H. ; Leichtle, D. ; Martins, J.P. ; Kim, B.Y. ; van der Laan, J.G. ; Bergman, J.</creator><creatorcontrib>Harb, M. ; Park, J.H. ; Leichtle, D. ; Martins, J.P. ; Kim, B.Y. ; van der Laan, J.G. ; Bergman, J.</creatorcontrib><description>In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2021.112402</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Dosage ; ITER ; Neutron flux ; Neutronics ; Pipes ; Plates ; Redesign ; Shielding ; Shutdown dose rate ; Shutdowns ; Si Dose ; TBM ; Tritium</subject><ispartof>Fusion engineering and design, 2021-07, Vol.168, p.112402, Article 112402</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</citedby><cites>FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</cites><orcidid>0000-0002-0037-9087 ; 0000-0001-9342-1629 ; 0000-0003-2269-3816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379621001782$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Harb, M.</creatorcontrib><creatorcontrib>Park, J.H.</creatorcontrib><creatorcontrib>Leichtle, D.</creatorcontrib><creatorcontrib>Martins, J.P.</creatorcontrib><creatorcontrib>Kim, B.Y.</creatorcontrib><creatorcontrib>van der Laan, J.G.</creatorcontrib><creatorcontrib>Bergman, J.</creatorcontrib><title>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</title><title>Fusion engineering and design</title><description>In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%.</description><subject>Dosage</subject><subject>ITER</subject><subject>Neutron flux</subject><subject>Neutronics</subject><subject>Pipes</subject><subject>Plates</subject><subject>Redesign</subject><subject>Shielding</subject><subject>Shutdown dose rate</subject><subject>Shutdowns</subject><subject>Si Dose</subject><subject>TBM</subject><subject>Tritium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LxDAQDKLg-fEbDPjcMx9t0zyq-AWioudzaJPtmeNMarYV_Pe2VnwVFnZZZoaZIeSEsyVnvDzbLNsBIawd4FIwwZeci5yJHbLglZKZ4rrcJQumBcuk0uU-OUDcMMbVOAsSHmDoUwzeIq1Dvf1CPx2O1oiA-A6hp7Gl-OZh63xY09j1Pgacnp3vgLYxAfY_lAsfZ1z2tB3WdDTk12EC0LvV1TNdXbzgEdlr6y3C8e8-JK_XV6vL2-z-8ebu8vw-szKXfWZtIaW1qiobVxZ1k2vJqlo3LrcVNJa1kjGoWKOaRhegWqGdkFaL3LrWlgrkITmddbsUP4bRoNnEIY350IiiEJxrraoRpWaUTRExQWu65N_r9GU4M1O5ZmP-yjVTuWYud2Sez0wYQ3x6SAath2DB-QS2Ny76fzW-ASB5iK4</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Harb, M.</creator><creator>Park, J.H.</creator><creator>Leichtle, D.</creator><creator>Martins, J.P.</creator><creator>Kim, B.Y.</creator><creator>van der Laan, J.G.</creator><creator>Bergman, J.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0037-9087</orcidid><orcidid>https://orcid.org/0000-0001-9342-1629</orcidid><orcidid>https://orcid.org/0000-0003-2269-3816</orcidid></search><sort><creationdate>202107</creationdate><title>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</title><author>Harb, M. ; Park, J.H. ; Leichtle, D. ; Martins, J.P. ; Kim, B.Y. ; van der Laan, J.G. ; Bergman, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cc533cc786bd65ab49308a9bd4c8ebc0f300e80b7bb95e7f29d23c924cdfc67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dosage</topic><topic>ITER</topic><topic>Neutron flux</topic><topic>Neutronics</topic><topic>Pipes</topic><topic>Plates</topic><topic>Redesign</topic><topic>Shielding</topic><topic>Shutdown dose rate</topic><topic>Shutdowns</topic><topic>Si Dose</topic><topic>TBM</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harb, M.</creatorcontrib><creatorcontrib>Park, J.H.</creatorcontrib><creatorcontrib>Leichtle, D.</creatorcontrib><creatorcontrib>Martins, J.P.</creatorcontrib><creatorcontrib>Kim, B.Y.</creatorcontrib><creatorcontrib>van der Laan, J.G.</creatorcontrib><creatorcontrib>Bergman, J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harb, M.</au><au>Park, J.H.</au><au>Leichtle, D.</au><au>Martins, J.P.</au><au>Kim, B.Y.</au><au>van der Laan, J.G.</au><au>Bergman, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs</atitle><jtitle>Fusion engineering and design</jtitle><date>2021-07</date><risdate>2021</risdate><volume>168</volume><spage>112402</spage><pages>112402-</pages><artnum>112402</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>In ITER [1], it is foreseen to have two Test Blanket Systems (TBS) installed in two dedicated Equatorial Ports (EP) for the purpose of testing and validating different concepts of tritium breeding blankets [2]. Each TBS consists of a Test Blanket Module Port Plug (TBM PP) and its associated systems; the Pipe Forest (PF) in the Port Interspace (PI) area and the corresponding systems in the Port Cell (PC) area. While analyses have been conducted before [3], the design has since gone through major evolution with a redesign of the PF, a new BP based on the butterfly doors concept, and an optional activated water delay tank. In this paper, the results of a comprehensive nuclear analyses that aim at assessing the neutronics performance of the revised PF and BP, will be discussed. These include calculations of neutron flux distributions and Shutdown Dose Rate (SDDR), following SA2 [4] scenario, in a baseline configuration and exploring the option of adding additional shielding plates in the PF. It has been found that the additional shielding plates reduces the neutron flux in the PI by ∼40–60% and the SDDR in the PI, due to activated components, by ∼50%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2021.112402</doi><orcidid>https://orcid.org/0000-0002-0037-9087</orcidid><orcidid>https://orcid.org/0000-0001-9342-1629</orcidid><orcidid>https://orcid.org/0000-0003-2269-3816</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2021-07, Vol.168, p.112402, Article 112402
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_journals_2552119978
source Elsevier ScienceDirect Journals
subjects Dosage
ITER
Neutron flux
Neutronics
Pipes
Plates
Redesign
Shielding
Shutdown dose rate
Shutdowns
Si Dose
TBM
Tritium
title Neutronics analysis and assessment of shielding options of pipe forest and Bioshield-Plug design for ITER TBSs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutronics%20analysis%20and%20assessment%20of%20shielding%20options%20of%20pipe%20forest%20and%20Bioshield-Plug%20design%20for%20ITER%20TBSs&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Harb,%20M.&rft.date=2021-07&rft.volume=168&rft.spage=112402&rft.pages=112402-&rft.artnum=112402&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2021.112402&rft_dat=%3Cproquest_cross%3E2552119978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552119978&rft_id=info:pmid/&rft_els_id=S0920379621001782&rfr_iscdi=true