Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae
At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale...
Gespeichert in:
Veröffentlicht in: | Cell biology international 2021-08, Vol.45 (8), p.1776-1783 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1783 |
---|---|
container_issue | 8 |
container_start_page | 1776 |
container_title | Cell biology international |
container_volume | 45 |
creator | Yoshimura, Yuki Hirayama, Reina Miura, Natsuko Utsumi, Ryotaro Kuroda, Kouichi Ueda, Mitsuyoshi Kataoka, Michihiko |
description | At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes. |
doi_str_mv | 10.1002/cbin.11617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552119612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552119612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0E4r3hAMgSO6SAJ4mdeAkVj0oIFsA6cp1Ja-TExU6AdMUROCMnIaXAktU89M030k_IAbATYCw-1RPTnAAIyNbINjDJozzhfH3ZCx4JKfkW2QnhiTGANBebZCtJJCQ8j7fJ4r5W1n6-fwStLNJZP3dvRlPd2bbzGGjlPK1dY1rnTTOl7QxpmKvWKEs9Oj9VjVkMo2uoq-jU9trZvh0E2Cz6erg3Db1XWs-Ud3Wvh4VGjy8mGIV7ZKNSNuD-T90lj5cXD6Pr6Obuajw6u4l0ymUWSRGneVIKzJDxrORJHguOaVylWclYyZVUXHKdIZaoEfJqglUFJXKQoESaJLvkaOWde_fcYWiLJ9f5ZnhZxJzHAFJAPFDHK0p7F4LHqph7UyvfF8CKZczFMubiO-YBPvxRdpMayz_0N9cBgBXwaiz2_6iK0fn4diX9Aok2i7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552119612</pqid></control><display><type>article</type><title>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yoshimura, Yuki ; Hirayama, Reina ; Miura, Natsuko ; Utsumi, Ryotaro ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</creator><creatorcontrib>Yoshimura, Yuki ; Hirayama, Reina ; Miura, Natsuko ; Utsumi, Ryotaro ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</creatorcontrib><description>At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes.</description><identifier>ISSN: 1065-6995</identifier><identifier>EISSN: 1095-8355</identifier><identifier>DOI: 10.1002/cbin.11617</identifier><identifier>PMID: 33913582</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Cell culture ; Cell Hypoxia - drug effects ; Cell Hypoxia - physiology ; Cells, Cultured ; Cytoplasm ; Enzymes ; Glycolysis ; Glycolysis - drug effects ; Glycolysis - physiology ; glycolytic enzymes ; Hypoxia ; META body ; Oxygen ; Phosphoglycerate mutase ; Phosphopyruvate hydratase ; Protein Kinase Inhibitors - pharmacology ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Pyruvate kinase ; Pyruvic acid ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - analysis ; Saccharomyces cerevisiae Proteins - metabolism ; small‐scale hypoxic culture ; spatial reorganization ; time‐scale monitoring ; Yeast</subject><ispartof>Cell biology international, 2021-08, Vol.45 (8), p.1776-1783</ispartof><rights>2021 International Federation for Cell Biology</rights><rights>2021 International Federation for Cell Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</citedby><cites>FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</cites><orcidid>0000-0002-8722-0406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbin.11617$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbin.11617$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33913582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshimura, Yuki</creatorcontrib><creatorcontrib>Hirayama, Reina</creatorcontrib><creatorcontrib>Miura, Natsuko</creatorcontrib><creatorcontrib>Utsumi, Ryotaro</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><title>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</title><title>Cell biology international</title><addtitle>Cell Biol Int</addtitle><description>At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes.</description><subject>Cell culture</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured</subject><subject>Cytoplasm</subject><subject>Enzymes</subject><subject>Glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Glycolysis - physiology</subject><subject>glycolytic enzymes</subject><subject>Hypoxia</subject><subject>META body</subject><subject>Oxygen</subject><subject>Phosphoglycerate mutase</subject><subject>Phosphopyruvate hydratase</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Pyruvate kinase</subject><subject>Pyruvic acid</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - analysis</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>small‐scale hypoxic culture</subject><subject>spatial reorganization</subject><subject>time‐scale monitoring</subject><subject>Yeast</subject><issn>1065-6995</issn><issn>1095-8355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtOwzAQhi0E4r3hAMgSO6SAJ4mdeAkVj0oIFsA6cp1Ja-TExU6AdMUROCMnIaXAktU89M030k_IAbATYCw-1RPTnAAIyNbINjDJozzhfH3ZCx4JKfkW2QnhiTGANBebZCtJJCQ8j7fJ4r5W1n6-fwStLNJZP3dvRlPd2bbzGGjlPK1dY1rnTTOl7QxpmKvWKEs9Oj9VjVkMo2uoq-jU9trZvh0E2Cz6erg3Db1XWs-Ud3Wvh4VGjy8mGIV7ZKNSNuD-T90lj5cXD6Pr6Obuajw6u4l0ymUWSRGneVIKzJDxrORJHguOaVylWclYyZVUXHKdIZaoEfJqglUFJXKQoESaJLvkaOWde_fcYWiLJ9f5ZnhZxJzHAFJAPFDHK0p7F4LHqph7UyvfF8CKZczFMubiO-YBPvxRdpMayz_0N9cBgBXwaiz2_6iK0fn4diX9Aok2i7o</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Yoshimura, Yuki</creator><creator>Hirayama, Reina</creator><creator>Miura, Natsuko</creator><creator>Utsumi, Ryotaro</creator><creator>Kuroda, Kouichi</creator><creator>Ueda, Mitsuyoshi</creator><creator>Kataoka, Michihiko</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-8722-0406</orcidid></search><sort><creationdate>202108</creationdate><title>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</title><author>Yoshimura, Yuki ; Hirayama, Reina ; Miura, Natsuko ; Utsumi, Ryotaro ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell culture</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured</topic><topic>Cytoplasm</topic><topic>Enzymes</topic><topic>Glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Glycolysis - physiology</topic><topic>glycolytic enzymes</topic><topic>Hypoxia</topic><topic>META body</topic><topic>Oxygen</topic><topic>Phosphoglycerate mutase</topic><topic>Phosphopyruvate hydratase</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Pyruvate kinase</topic><topic>Pyruvic acid</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - analysis</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>small‐scale hypoxic culture</topic><topic>spatial reorganization</topic><topic>time‐scale monitoring</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimura, Yuki</creatorcontrib><creatorcontrib>Hirayama, Reina</creatorcontrib><creatorcontrib>Miura, Natsuko</creatorcontrib><creatorcontrib>Utsumi, Ryotaro</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cell biology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshimura, Yuki</au><au>Hirayama, Reina</au><au>Miura, Natsuko</au><au>Utsumi, Ryotaro</au><au>Kuroda, Kouichi</au><au>Ueda, Mitsuyoshi</au><au>Kataoka, Michihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</atitle><jtitle>Cell biology international</jtitle><addtitle>Cell Biol Int</addtitle><date>2021-08</date><risdate>2021</risdate><volume>45</volume><issue>8</issue><spage>1776</spage><epage>1783</epage><pages>1776-1783</pages><issn>1065-6995</issn><eissn>1095-8355</eissn><abstract>At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33913582</pmid><doi>10.1002/cbin.11617</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8722-0406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-6995 |
ispartof | Cell biology international, 2021-08, Vol.45 (8), p.1776-1783 |
issn | 1065-6995 1095-8355 |
language | eng |
recordid | cdi_proquest_journals_2552119612 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Cell culture Cell Hypoxia - drug effects Cell Hypoxia - physiology Cells, Cultured Cytoplasm Enzymes Glycolysis Glycolysis - drug effects Glycolysis - physiology glycolytic enzymes Hypoxia META body Oxygen Phosphoglycerate mutase Phosphopyruvate hydratase Protein Kinase Inhibitors - pharmacology Pyrazoles - pharmacology Pyrimidines - pharmacology Pyruvate kinase Pyruvic acid Saccharomyces cerevisiae Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae Proteins - analysis Saccharomyces cerevisiae Proteins - metabolism small‐scale hypoxic culture spatial reorganization time‐scale monitoring Yeast |
title | Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%E2%80%90scale%20hypoxic%20cultures%20for%20monitoring%20the%20spatial%20reorganization%20of%20glycolytic%20enzymes%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Cell%20biology%20international&rft.au=Yoshimura,%20Yuki&rft.date=2021-08&rft.volume=45&rft.issue=8&rft.spage=1776&rft.epage=1783&rft.pages=1776-1783&rft.issn=1065-6995&rft.eissn=1095-8355&rft_id=info:doi/10.1002/cbin.11617&rft_dat=%3Cproquest_cross%3E2552119612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552119612&rft_id=info:pmid/33913582&rfr_iscdi=true |