Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae

At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell biology international 2021-08, Vol.45 (8), p.1776-1783
Hauptverfasser: Yoshimura, Yuki, Hirayama, Reina, Miura, Natsuko, Utsumi, Ryotaro, Kuroda, Kouichi, Ueda, Mitsuyoshi, Kataoka, Michihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1783
container_issue 8
container_start_page 1776
container_title Cell biology international
container_volume 45
creator Yoshimura, Yuki
Hirayama, Reina
Miura, Natsuko
Utsumi, Ryotaro
Kuroda, Kouichi
Ueda, Mitsuyoshi
Kataoka, Michihiko
description At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes.
doi_str_mv 10.1002/cbin.11617
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552119612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552119612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0E4r3hAMgSO6SAJ4mdeAkVj0oIFsA6cp1Ja-TExU6AdMUROCMnIaXAktU89M030k_IAbATYCw-1RPTnAAIyNbINjDJozzhfH3ZCx4JKfkW2QnhiTGANBebZCtJJCQ8j7fJ4r5W1n6-fwStLNJZP3dvRlPd2bbzGGjlPK1dY1rnTTOl7QxpmKvWKEs9Oj9VjVkMo2uoq-jU9trZvh0E2Cz6erg3Db1XWs-Ud3Wvh4VGjy8mGIV7ZKNSNuD-T90lj5cXD6Pr6Obuajw6u4l0ymUWSRGneVIKzJDxrORJHguOaVylWclYyZVUXHKdIZaoEfJqglUFJXKQoESaJLvkaOWde_fcYWiLJ9f5ZnhZxJzHAFJAPFDHK0p7F4LHqph7UyvfF8CKZczFMubiO-YBPvxRdpMayz_0N9cBgBXwaiz2_6iK0fn4diX9Aok2i7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552119612</pqid></control><display><type>article</type><title>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yoshimura, Yuki ; Hirayama, Reina ; Miura, Natsuko ; Utsumi, Ryotaro ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</creator><creatorcontrib>Yoshimura, Yuki ; Hirayama, Reina ; Miura, Natsuko ; Utsumi, Ryotaro ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</creatorcontrib><description>At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes.</description><identifier>ISSN: 1065-6995</identifier><identifier>EISSN: 1095-8355</identifier><identifier>DOI: 10.1002/cbin.11617</identifier><identifier>PMID: 33913582</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Cell culture ; Cell Hypoxia - drug effects ; Cell Hypoxia - physiology ; Cells, Cultured ; Cytoplasm ; Enzymes ; Glycolysis ; Glycolysis - drug effects ; Glycolysis - physiology ; glycolytic enzymes ; Hypoxia ; META body ; Oxygen ; Phosphoglycerate mutase ; Phosphopyruvate hydratase ; Protein Kinase Inhibitors - pharmacology ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Pyruvate kinase ; Pyruvic acid ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - analysis ; Saccharomyces cerevisiae Proteins - metabolism ; small‐scale hypoxic culture ; spatial reorganization ; time‐scale monitoring ; Yeast</subject><ispartof>Cell biology international, 2021-08, Vol.45 (8), p.1776-1783</ispartof><rights>2021 International Federation for Cell Biology</rights><rights>2021 International Federation for Cell Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</citedby><cites>FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</cites><orcidid>0000-0002-8722-0406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbin.11617$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbin.11617$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33913582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshimura, Yuki</creatorcontrib><creatorcontrib>Hirayama, Reina</creatorcontrib><creatorcontrib>Miura, Natsuko</creatorcontrib><creatorcontrib>Utsumi, Ryotaro</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><title>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</title><title>Cell biology international</title><addtitle>Cell Biol Int</addtitle><description>At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes.</description><subject>Cell culture</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured</subject><subject>Cytoplasm</subject><subject>Enzymes</subject><subject>Glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Glycolysis - physiology</subject><subject>glycolytic enzymes</subject><subject>Hypoxia</subject><subject>META body</subject><subject>Oxygen</subject><subject>Phosphoglycerate mutase</subject><subject>Phosphopyruvate hydratase</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Pyruvate kinase</subject><subject>Pyruvic acid</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - analysis</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>small‐scale hypoxic culture</subject><subject>spatial reorganization</subject><subject>time‐scale monitoring</subject><subject>Yeast</subject><issn>1065-6995</issn><issn>1095-8355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtOwzAQhi0E4r3hAMgSO6SAJ4mdeAkVj0oIFsA6cp1Ja-TExU6AdMUROCMnIaXAktU89M030k_IAbATYCw-1RPTnAAIyNbINjDJozzhfH3ZCx4JKfkW2QnhiTGANBebZCtJJCQ8j7fJ4r5W1n6-fwStLNJZP3dvRlPd2bbzGGjlPK1dY1rnTTOl7QxpmKvWKEs9Oj9VjVkMo2uoq-jU9trZvh0E2Cz6erg3Db1XWs-Ud3Wvh4VGjy8mGIV7ZKNSNuD-T90lj5cXD6Pr6Obuajw6u4l0ymUWSRGneVIKzJDxrORJHguOaVylWclYyZVUXHKdIZaoEfJqglUFJXKQoESaJLvkaOWde_fcYWiLJ9f5ZnhZxJzHAFJAPFDHK0p7F4LHqph7UyvfF8CKZczFMubiO-YBPvxRdpMayz_0N9cBgBXwaiz2_6iK0fn4diX9Aok2i7o</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Yoshimura, Yuki</creator><creator>Hirayama, Reina</creator><creator>Miura, Natsuko</creator><creator>Utsumi, Ryotaro</creator><creator>Kuroda, Kouichi</creator><creator>Ueda, Mitsuyoshi</creator><creator>Kataoka, Michihiko</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-8722-0406</orcidid></search><sort><creationdate>202108</creationdate><title>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</title><author>Yoshimura, Yuki ; Hirayama, Reina ; Miura, Natsuko ; Utsumi, Ryotaro ; Kuroda, Kouichi ; Ueda, Mitsuyoshi ; Kataoka, Michihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4597-962483d6e7e057d538265e42f47d00d5a9a595c7eedece18fbeff1de5191a6433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell culture</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured</topic><topic>Cytoplasm</topic><topic>Enzymes</topic><topic>Glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Glycolysis - physiology</topic><topic>glycolytic enzymes</topic><topic>Hypoxia</topic><topic>META body</topic><topic>Oxygen</topic><topic>Phosphoglycerate mutase</topic><topic>Phosphopyruvate hydratase</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Pyruvate kinase</topic><topic>Pyruvic acid</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - analysis</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>small‐scale hypoxic culture</topic><topic>spatial reorganization</topic><topic>time‐scale monitoring</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimura, Yuki</creatorcontrib><creatorcontrib>Hirayama, Reina</creatorcontrib><creatorcontrib>Miura, Natsuko</creatorcontrib><creatorcontrib>Utsumi, Ryotaro</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cell biology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshimura, Yuki</au><au>Hirayama, Reina</au><au>Miura, Natsuko</au><au>Utsumi, Ryotaro</au><au>Kuroda, Kouichi</au><au>Ueda, Mitsuyoshi</au><au>Kataoka, Michihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae</atitle><jtitle>Cell biology international</jtitle><addtitle>Cell Biol Int</addtitle><date>2021-08</date><risdate>2021</risdate><volume>45</volume><issue>8</issue><spage>1776</spage><epage>1783</epage><pages>1776-1783</pages><issn>1065-6995</issn><eissn>1095-8355</eissn><abstract>At normal oxygen concentration, glycolytic enzymes are scattered in the cytoplasm of Saccharomyces cerevisiae. Under hypoxia, however, most of these enzymes, including enolase, pyruvate kinase, and phosphoglycerate mutase, spatially reorganize to form cytoplasmic foci. We tested various small‐scale hypoxic culture systems and showed that enolase foci formation occurs in all the systems tested, including in liquid and on solid media. Notably, a small‐scale hypoxic culture in a bench‐top multi‐gas incubator enabled the regulation of oxygen concentration in the media and faster foci formation. Here, we demonstrate that the foci formation of enolase starts within few hours after changing the oxygen concentration to 1% in a small‐scale cultivation system. The order of foci formation by each enzyme is tightly regulated, and of the three enzymes, enolase was the fastest to respond to hypoxia. We further tested the use of the small‐scale cultivation method to screen reagents that can control the spatial reorganization of enzymes under hypoxia. An AMPK inhibitor, dorsomorphin, was found to delay formation of the foci in all three glycolytic enzymes tested. These methods and results provide efficient ways to investigate the spatial reorganization of proteins under hypoxia to form a multienzyme assembly, the META body, thereby contributing to understanding and utilizing natural systems to control cellular metabolism via the spatial reorganization of enzymes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33913582</pmid><doi>10.1002/cbin.11617</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8722-0406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-6995
ispartof Cell biology international, 2021-08, Vol.45 (8), p.1776-1783
issn 1065-6995
1095-8355
language eng
recordid cdi_proquest_journals_2552119612
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Cell culture
Cell Hypoxia - drug effects
Cell Hypoxia - physiology
Cells, Cultured
Cytoplasm
Enzymes
Glycolysis
Glycolysis - drug effects
Glycolysis - physiology
glycolytic enzymes
Hypoxia
META body
Oxygen
Phosphoglycerate mutase
Phosphopyruvate hydratase
Protein Kinase Inhibitors - pharmacology
Pyrazoles - pharmacology
Pyrimidines - pharmacology
Pyruvate kinase
Pyruvic acid
Saccharomyces cerevisiae
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae Proteins - analysis
Saccharomyces cerevisiae Proteins - metabolism
small‐scale hypoxic culture
spatial reorganization
time‐scale monitoring
Yeast
title Small‐scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%E2%80%90scale%20hypoxic%20cultures%20for%20monitoring%20the%20spatial%20reorganization%20of%20glycolytic%20enzymes%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Cell%20biology%20international&rft.au=Yoshimura,%20Yuki&rft.date=2021-08&rft.volume=45&rft.issue=8&rft.spage=1776&rft.epage=1783&rft.pages=1776-1783&rft.issn=1065-6995&rft.eissn=1095-8355&rft_id=info:doi/10.1002/cbin.11617&rft_dat=%3Cproquest_cross%3E2552119612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552119612&rft_id=info:pmid/33913582&rfr_iscdi=true