Submodeling in wear predictive finite element models with multipoint contacts

The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2021-08, Vol.122 (15), p.3812-3823
Hauptverfasser: Curreli, Cristina, Viceconti, Marco, Di Puccio, Francesca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3823
container_issue 15
container_start_page 3812
container_title International journal for numerical methods in engineering
container_volume 122
creator Curreli, Cristina
Viceconti, Marco
Di Puccio, Francesca
description The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost.
doi_str_mv 10.1002/nme.6682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552118353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552118353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</originalsourceid><addsrcrecordid>eNp10E1PwzAMBuAIgcQYSPyESFy4dOSjadojmsaHtMEBOEdp6kKmNi1JyrR_T7tx5WTJfmTLL0LXlCwoIezOtbDIspydoBklhUwII_IUzcZRkYgip-foIoQtIZQKwmdo8zaUbVdBY90ntg7vQHvce6isifYHcG2djYChgRZcxAca8M7GL9wOTbR9Z8e26VzUJoZLdFbrJsDVX52jj4fV-_IpWb8-Pi_v14nhTLJEZ3lZFaJKy1ICIwVP09JIDnlqci1SSAmRUDPCpw80qU2p6VhknkqeCcr5HN0c9_a--x4gRLXtBu_Gk4oJwSjNuZjU7VEZ34XgoVa9t632e0WJmsJSY1hqCmukyZHubAP7f5162awO_hfGkGrD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552118353</pqid></control><display><type>article</type><title>Submodeling in wear predictive finite element models with multipoint contacts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Curreli, Cristina ; Viceconti, Marco ; Di Puccio, Francesca</creator><creatorcontrib>Curreli, Cristina ; Viceconti, Marco ; Di Puccio, Francesca</creatorcontrib><description>The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6682</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Boundary conditions ; Computational efficiency ; Computing costs ; finite element analysis ; Finite element method ; Mathematical models ; multipoint contact ; Point contact ; Simulation ; submodeling ; Wear ; wear prediction</subject><ispartof>International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3812-3823</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</citedby><cites>FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</cites><orcidid>0000-0002-9904-3849 ; 0000-0002-2293-1530 ; 0000-0003-4558-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6682$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6682$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Curreli, Cristina</creatorcontrib><creatorcontrib>Viceconti, Marco</creatorcontrib><creatorcontrib>Di Puccio, Francesca</creatorcontrib><title>Submodeling in wear predictive finite element models with multipoint contacts</title><title>International journal for numerical methods in engineering</title><description>The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost.</description><subject>Boundary conditions</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>finite element analysis</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>multipoint contact</subject><subject>Point contact</subject><subject>Simulation</subject><subject>submodeling</subject><subject>Wear</subject><subject>wear prediction</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10E1PwzAMBuAIgcQYSPyESFy4dOSjadojmsaHtMEBOEdp6kKmNi1JyrR_T7tx5WTJfmTLL0LXlCwoIezOtbDIspydoBklhUwII_IUzcZRkYgip-foIoQtIZQKwmdo8zaUbVdBY90ntg7vQHvce6isifYHcG2djYChgRZcxAca8M7GL9wOTbR9Z8e26VzUJoZLdFbrJsDVX52jj4fV-_IpWb8-Pi_v14nhTLJEZ3lZFaJKy1ICIwVP09JIDnlqci1SSAmRUDPCpw80qU2p6VhknkqeCcr5HN0c9_a--x4gRLXtBu_Gk4oJwSjNuZjU7VEZ34XgoVa9t632e0WJmsJSY1hqCmukyZHubAP7f5162awO_hfGkGrD</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Curreli, Cristina</creator><creator>Viceconti, Marco</creator><creator>Di Puccio, Francesca</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9904-3849</orcidid><orcidid>https://orcid.org/0000-0002-2293-1530</orcidid><orcidid>https://orcid.org/0000-0003-4558-1497</orcidid></search><sort><creationdate>20210815</creationdate><title>Submodeling in wear predictive finite element models with multipoint contacts</title><author>Curreli, Cristina ; Viceconti, Marco ; Di Puccio, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>finite element analysis</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>multipoint contact</topic><topic>Point contact</topic><topic>Simulation</topic><topic>submodeling</topic><topic>Wear</topic><topic>wear prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curreli, Cristina</creatorcontrib><creatorcontrib>Viceconti, Marco</creatorcontrib><creatorcontrib>Di Puccio, Francesca</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curreli, Cristina</au><au>Viceconti, Marco</au><au>Di Puccio, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submodeling in wear predictive finite element models with multipoint contacts</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>122</volume><issue>15</issue><spage>3812</spage><epage>3823</epage><pages>3812-3823</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6682</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9904-3849</orcidid><orcidid>https://orcid.org/0000-0002-2293-1530</orcidid><orcidid>https://orcid.org/0000-0003-4558-1497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3812-3823
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2552118353
source Wiley Online Library Journals Frontfile Complete
subjects Boundary conditions
Computational efficiency
Computing costs
finite element analysis
Finite element method
Mathematical models
multipoint contact
Point contact
Simulation
submodeling
Wear
wear prediction
title Submodeling in wear predictive finite element models with multipoint contacts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submodeling%20in%20wear%20predictive%20finite%20element%20models%20with%20multipoint%20contacts&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Curreli,%20Cristina&rft.date=2021-08-15&rft.volume=122&rft.issue=15&rft.spage=3812&rft.epage=3823&rft.pages=3812-3823&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6682&rft_dat=%3Cproquest_cross%3E2552118353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552118353&rft_id=info:pmid/&rfr_iscdi=true