Submodeling in wear predictive finite element models with multipoint contacts
The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2021-08, Vol.122 (15), p.3812-3823 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3823 |
---|---|
container_issue | 15 |
container_start_page | 3812 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Curreli, Cristina Viceconti, Marco Di Puccio, Francesca |
description | The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost. |
doi_str_mv | 10.1002/nme.6682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552118353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552118353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</originalsourceid><addsrcrecordid>eNp10E1PwzAMBuAIgcQYSPyESFy4dOSjadojmsaHtMEBOEdp6kKmNi1JyrR_T7tx5WTJfmTLL0LXlCwoIezOtbDIspydoBklhUwII_IUzcZRkYgip-foIoQtIZQKwmdo8zaUbVdBY90ntg7vQHvce6isifYHcG2djYChgRZcxAca8M7GL9wOTbR9Z8e26VzUJoZLdFbrJsDVX52jj4fV-_IpWb8-Pi_v14nhTLJEZ3lZFaJKy1ICIwVP09JIDnlqci1SSAmRUDPCpw80qU2p6VhknkqeCcr5HN0c9_a--x4gRLXtBu_Gk4oJwSjNuZjU7VEZ34XgoVa9t632e0WJmsJSY1hqCmukyZHubAP7f5162awO_hfGkGrD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552118353</pqid></control><display><type>article</type><title>Submodeling in wear predictive finite element models with multipoint contacts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Curreli, Cristina ; Viceconti, Marco ; Di Puccio, Francesca</creator><creatorcontrib>Curreli, Cristina ; Viceconti, Marco ; Di Puccio, Francesca</creatorcontrib><description>The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6682</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Boundary conditions ; Computational efficiency ; Computing costs ; finite element analysis ; Finite element method ; Mathematical models ; multipoint contact ; Point contact ; Simulation ; submodeling ; Wear ; wear prediction</subject><ispartof>International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3812-3823</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</citedby><cites>FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</cites><orcidid>0000-0002-9904-3849 ; 0000-0002-2293-1530 ; 0000-0003-4558-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6682$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6682$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Curreli, Cristina</creatorcontrib><creatorcontrib>Viceconti, Marco</creatorcontrib><creatorcontrib>Di Puccio, Francesca</creatorcontrib><title>Submodeling in wear predictive finite element models with multipoint contacts</title><title>International journal for numerical methods in engineering</title><description>The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost.</description><subject>Boundary conditions</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>finite element analysis</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>multipoint contact</subject><subject>Point contact</subject><subject>Simulation</subject><subject>submodeling</subject><subject>Wear</subject><subject>wear prediction</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10E1PwzAMBuAIgcQYSPyESFy4dOSjadojmsaHtMEBOEdp6kKmNi1JyrR_T7tx5WTJfmTLL0LXlCwoIezOtbDIspydoBklhUwII_IUzcZRkYgip-foIoQtIZQKwmdo8zaUbVdBY90ntg7vQHvce6isifYHcG2djYChgRZcxAca8M7GL9wOTbR9Z8e26VzUJoZLdFbrJsDVX52jj4fV-_IpWb8-Pi_v14nhTLJEZ3lZFaJKy1ICIwVP09JIDnlqci1SSAmRUDPCpw80qU2p6VhknkqeCcr5HN0c9_a--x4gRLXtBu_Gk4oJwSjNuZjU7VEZ34XgoVa9t632e0WJmsJSY1hqCmukyZHubAP7f5162awO_hfGkGrD</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Curreli, Cristina</creator><creator>Viceconti, Marco</creator><creator>Di Puccio, Francesca</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9904-3849</orcidid><orcidid>https://orcid.org/0000-0002-2293-1530</orcidid><orcidid>https://orcid.org/0000-0003-4558-1497</orcidid></search><sort><creationdate>20210815</creationdate><title>Submodeling in wear predictive finite element models with multipoint contacts</title><author>Curreli, Cristina ; Viceconti, Marco ; Di Puccio, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-a68bd95d4bb7e209344bc73e84c8a54e4007ef2031097a0fcba1a0f7847365133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>finite element analysis</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>multipoint contact</topic><topic>Point contact</topic><topic>Simulation</topic><topic>submodeling</topic><topic>Wear</topic><topic>wear prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curreli, Cristina</creatorcontrib><creatorcontrib>Viceconti, Marco</creatorcontrib><creatorcontrib>Di Puccio, Francesca</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curreli, Cristina</au><au>Viceconti, Marco</au><au>Di Puccio, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submodeling in wear predictive finite element models with multipoint contacts</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>122</volume><issue>15</issue><spage>3812</spage><epage>3823</epage><pages>3812-3823</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The application of the submodeling technique to finite element (FE) wear analyses has been recently proposed as an efficient solution to reduce the computational cost of the simulations and provide accurate numerical results. However, the method was validated only on single point contact cases. The present study proposes a generalization of the wear submodeling procedure that can be used to speed up FE wear simulations with multipoint contacts. The modified global–local procedure is applied and evaluated on a double contact pin on plate wear test using three‐dimensional models developed in Ansys® mechanical APDL. Three different model geometries with different curvature radii at the contact regions were considered in order to replicate possible critical scenarios. Results suggest that an additional wear simulation step where the global model is used to simulate the first wear cycles is needed to correctly transfer the boundary conditions to the local models. The new proposed strategy demonstrates the possibility to extend the method to more general FE wear simulations by significantly reducing their computational cost.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6682</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9904-3849</orcidid><orcidid>https://orcid.org/0000-0002-2293-1530</orcidid><orcidid>https://orcid.org/0000-0003-4558-1497</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-08, Vol.122 (15), p.3812-3823 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2552118353 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary conditions Computational efficiency Computing costs finite element analysis Finite element method Mathematical models multipoint contact Point contact Simulation submodeling Wear wear prediction |
title | Submodeling in wear predictive finite element models with multipoint contacts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submodeling%20in%20wear%20predictive%20finite%20element%20models%20with%20multipoint%20contacts&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Curreli,%20Cristina&rft.date=2021-08-15&rft.volume=122&rft.issue=15&rft.spage=3812&rft.epage=3823&rft.pages=3812-3823&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6682&rft_dat=%3Cproquest_cross%3E2552118353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552118353&rft_id=info:pmid/&rfr_iscdi=true |