Settling behaviour of thin curved particles in quiescent fluid and turbulence

The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling through quiescent fluid and homogeneous anisotropic tur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-09, Vol.922, Article A30
Hauptverfasser: Chan, Timothy T.K., Blay Esteban, Luis, Huisman, Sander G., Shrimpton, John S., Ganapathisubramani, Bharathram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 922
creator Chan, Timothy T.K.
Blay Esteban, Luis
Huisman, Sander G.
Shrimpton, John S.
Ganapathisubramani, Bharathram
description The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling through quiescent fluid and homogeneous anisotropic turbulence. The particles have Archimedes numbers based on the mean descent velocity $0.75 \times 10^{4} \lesssim Ar \lesssim 2.75 \times 10^{4}$. Turbulence reaching a Reynolds number of $Re_\lambda \approx 100$ is generated in a water tank using random jet arrays mounted in a coplanar configuration. After the flow becomes statistically stationary, a particle is released and its three-dimensional motion is recorded using two orthogonally positioned high-speed cameras. We propose a simple pendulum model that accurately captures the velocity fluctuations of the particles in still fluid and find that differences in the falling style might be explained by a closer alignment between the particle's pitch angle and its velocity vector. By comparing the trajectories under background turbulence with the quiescent fluid cases, we measure a decrease in the mean descent velocity in turbulence for the conditions tested. We also study the secondary motion of the particles and identify descent events that are unique to turbulence such as ‘long gliding’ and ‘rapid rotation’ events. Lastly, we show an increase in the radial dispersion of the particles under background turbulence and correlate the time scale of descent events with the local settling velocity.
doi_str_mv 10.1017/jfm.2021.520
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2551900869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_520</cupid><sourcerecordid>2551900869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a8f9b3a259e6a8b3b03b783fee803b544665b444b2d55af2227e9c4655e8e6533</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7vme3ePUvyCigf1HJLdSZuy3bZJtuC_N6UFL55mGJ55Z3gQuqWkpIRWDyu3LhlhtJSMnKEJFaopKiXkOZoQwlhBKSOX6CrGFSGUk6aaoPdPSKn3wwJbWJq934wBbxxOSz_gdgx76PDWhOTbHiLOs93oIbYwJOz60XfYDB1OY7BjD0ML1-jCmT7CzalO0ffz09fstZh_vLzNHudFywVJhaldY7lhsgFlasst4baquQOocyeFUEpaIYRlnZTGMcYqaFqhpIQalOR8iu6Ouduw2Y0Qk17lx4d8UjMpaUNIrZpM3R-pNmxiDOD0Nvi1CT-aEn0QprMwfRCms7CMlyfcrG3w3QL-Uv9d-AXb0G0j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551900869</pqid></control><display><type>article</type><title>Settling behaviour of thin curved particles in quiescent fluid and turbulence</title><source>Cambridge University Press Journals Complete</source><creator>Chan, Timothy T.K. ; Blay Esteban, Luis ; Huisman, Sander G. ; Shrimpton, John S. ; Ganapathisubramani, Bharathram</creator><creatorcontrib>Chan, Timothy T.K. ; Blay Esteban, Luis ; Huisman, Sander G. ; Shrimpton, John S. ; Ganapathisubramani, Bharathram</creatorcontrib><description>The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling through quiescent fluid and homogeneous anisotropic turbulence. The particles have Archimedes numbers based on the mean descent velocity $0.75 \times 10^{4} \lesssim Ar \lesssim 2.75 \times 10^{4}$. Turbulence reaching a Reynolds number of $Re_\lambda \approx 100$ is generated in a water tank using random jet arrays mounted in a coplanar configuration. After the flow becomes statistically stationary, a particle is released and its three-dimensional motion is recorded using two orthogonally positioned high-speed cameras. We propose a simple pendulum model that accurately captures the velocity fluctuations of the particles in still fluid and find that differences in the falling style might be explained by a closer alignment between the particle's pitch angle and its velocity vector. By comparing the trajectories under background turbulence with the quiescent fluid cases, we measure a decrease in the mean descent velocity in turbulence for the conditions tested. We also study the secondary motion of the particles and identify descent events that are unique to turbulence such as ‘long gliding’ and ‘rapid rotation’ events. Lastly, we show an increase in the radial dispersion of the particles under background turbulence and correlate the time scale of descent events with the local settling velocity.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.520</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cameras ; Computational fluid dynamics ; Cylindrical shells ; Flow velocity ; Fluid flow ; Gliding ; High speed cameras ; JFM Papers ; Movement ; Outdoor air quality ; Pitch (inclination) ; Reynolds number ; Settling behavior ; Settling behaviour ; Settling rate ; Settling velocity ; Three dimensional motion ; Turbulence ; Turbulent flow ; Vortices ; Water tanks</subject><ispartof>Journal of fluid mechanics, 2021-09, Vol.922, Article A30</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a8f9b3a259e6a8b3b03b783fee803b544665b444b2d55af2227e9c4655e8e6533</citedby><cites>FETCH-LOGICAL-c340t-a8f9b3a259e6a8b3b03b783fee803b544665b444b2d55af2227e9c4655e8e6533</cites><orcidid>0000-0003-2363-0403 ; 0000-0003-3790-9886 ; 0000-0003-4675-6957 ; 0000-0001-9817-0486 ; 0000-0003-2510-6373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021005206/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Chan, Timothy T.K.</creatorcontrib><creatorcontrib>Blay Esteban, Luis</creatorcontrib><creatorcontrib>Huisman, Sander G.</creatorcontrib><creatorcontrib>Shrimpton, John S.</creatorcontrib><creatorcontrib>Ganapathisubramani, Bharathram</creatorcontrib><title>Settling behaviour of thin curved particles in quiescent fluid and turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling through quiescent fluid and homogeneous anisotropic turbulence. The particles have Archimedes numbers based on the mean descent velocity $0.75 \times 10^{4} \lesssim Ar \lesssim 2.75 \times 10^{4}$. Turbulence reaching a Reynolds number of $Re_\lambda \approx 100$ is generated in a water tank using random jet arrays mounted in a coplanar configuration. After the flow becomes statistically stationary, a particle is released and its three-dimensional motion is recorded using two orthogonally positioned high-speed cameras. We propose a simple pendulum model that accurately captures the velocity fluctuations of the particles in still fluid and find that differences in the falling style might be explained by a closer alignment between the particle's pitch angle and its velocity vector. By comparing the trajectories under background turbulence with the quiescent fluid cases, we measure a decrease in the mean descent velocity in turbulence for the conditions tested. We also study the secondary motion of the particles and identify descent events that are unique to turbulence such as ‘long gliding’ and ‘rapid rotation’ events. Lastly, we show an increase in the radial dispersion of the particles under background turbulence and correlate the time scale of descent events with the local settling velocity.</description><subject>Cameras</subject><subject>Computational fluid dynamics</subject><subject>Cylindrical shells</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Gliding</subject><subject>High speed cameras</subject><subject>JFM Papers</subject><subject>Movement</subject><subject>Outdoor air quality</subject><subject>Pitch (inclination)</subject><subject>Reynolds number</subject><subject>Settling behavior</subject><subject>Settling behaviour</subject><subject>Settling rate</subject><subject>Settling velocity</subject><subject>Three dimensional motion</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vortices</subject><subject>Water tanks</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7vme3ePUvyCigf1HJLdSZuy3bZJtuC_N6UFL55mGJ55Z3gQuqWkpIRWDyu3LhlhtJSMnKEJFaopKiXkOZoQwlhBKSOX6CrGFSGUk6aaoPdPSKn3wwJbWJq934wBbxxOSz_gdgx76PDWhOTbHiLOs93oIbYwJOz60XfYDB1OY7BjD0ML1-jCmT7CzalO0ffz09fstZh_vLzNHudFywVJhaldY7lhsgFlasst4baquQOocyeFUEpaIYRlnZTGMcYqaFqhpIQalOR8iu6Ouduw2Y0Qk17lx4d8UjMpaUNIrZpM3R-pNmxiDOD0Nvi1CT-aEn0QprMwfRCms7CMlyfcrG3w3QL-Uv9d-AXb0G0j</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Chan, Timothy T.K.</creator><creator>Blay Esteban, Luis</creator><creator>Huisman, Sander G.</creator><creator>Shrimpton, John S.</creator><creator>Ganapathisubramani, Bharathram</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2363-0403</orcidid><orcidid>https://orcid.org/0000-0003-3790-9886</orcidid><orcidid>https://orcid.org/0000-0003-4675-6957</orcidid><orcidid>https://orcid.org/0000-0001-9817-0486</orcidid><orcidid>https://orcid.org/0000-0003-2510-6373</orcidid></search><sort><creationdate>20210910</creationdate><title>Settling behaviour of thin curved particles in quiescent fluid and turbulence</title><author>Chan, Timothy T.K. ; Blay Esteban, Luis ; Huisman, Sander G. ; Shrimpton, John S. ; Ganapathisubramani, Bharathram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a8f9b3a259e6a8b3b03b783fee803b544665b444b2d55af2227e9c4655e8e6533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Computational fluid dynamics</topic><topic>Cylindrical shells</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Gliding</topic><topic>High speed cameras</topic><topic>JFM Papers</topic><topic>Movement</topic><topic>Outdoor air quality</topic><topic>Pitch (inclination)</topic><topic>Reynolds number</topic><topic>Settling behavior</topic><topic>Settling behaviour</topic><topic>Settling rate</topic><topic>Settling velocity</topic><topic>Three dimensional motion</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vortices</topic><topic>Water tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Timothy T.K.</creatorcontrib><creatorcontrib>Blay Esteban, Luis</creatorcontrib><creatorcontrib>Huisman, Sander G.</creatorcontrib><creatorcontrib>Shrimpton, John S.</creatorcontrib><creatorcontrib>Ganapathisubramani, Bharathram</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Timothy T.K.</au><au>Blay Esteban, Luis</au><au>Huisman, Sander G.</au><au>Shrimpton, John S.</au><au>Ganapathisubramani, Bharathram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Settling behaviour of thin curved particles in quiescent fluid and turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-09-10</date><risdate>2021</risdate><volume>922</volume><artnum>A30</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling through quiescent fluid and homogeneous anisotropic turbulence. The particles have Archimedes numbers based on the mean descent velocity $0.75 \times 10^{4} \lesssim Ar \lesssim 2.75 \times 10^{4}$. Turbulence reaching a Reynolds number of $Re_\lambda \approx 100$ is generated in a water tank using random jet arrays mounted in a coplanar configuration. After the flow becomes statistically stationary, a particle is released and its three-dimensional motion is recorded using two orthogonally positioned high-speed cameras. We propose a simple pendulum model that accurately captures the velocity fluctuations of the particles in still fluid and find that differences in the falling style might be explained by a closer alignment between the particle's pitch angle and its velocity vector. By comparing the trajectories under background turbulence with the quiescent fluid cases, we measure a decrease in the mean descent velocity in turbulence for the conditions tested. We also study the secondary motion of the particles and identify descent events that are unique to turbulence such as ‘long gliding’ and ‘rapid rotation’ events. Lastly, we show an increase in the radial dispersion of the particles under background turbulence and correlate the time scale of descent events with the local settling velocity.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.520</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2363-0403</orcidid><orcidid>https://orcid.org/0000-0003-3790-9886</orcidid><orcidid>https://orcid.org/0000-0003-4675-6957</orcidid><orcidid>https://orcid.org/0000-0001-9817-0486</orcidid><orcidid>https://orcid.org/0000-0003-2510-6373</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-09, Vol.922, Article A30
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2551900869
source Cambridge University Press Journals Complete
subjects Cameras
Computational fluid dynamics
Cylindrical shells
Flow velocity
Fluid flow
Gliding
High speed cameras
JFM Papers
Movement
Outdoor air quality
Pitch (inclination)
Reynolds number
Settling behavior
Settling behaviour
Settling rate
Settling velocity
Three dimensional motion
Turbulence
Turbulent flow
Vortices
Water tanks
title Settling behaviour of thin curved particles in quiescent fluid and turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Settling%20behaviour%20of%20thin%20curved%20particles%20in%20quiescent%20fluid%20and%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Chan,%20Timothy%20T.K.&rft.date=2021-09-10&rft.volume=922&rft.artnum=A30&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.520&rft_dat=%3Cproquest_cross%3E2551900869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551900869&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_520&rfr_iscdi=true