Solvent behavior of an ionic liquid set around a cellulose Iβ crystallite model through molecular dynamics simulations

A set of imidazolium-based ionic liquids: [C 4 mim][PF 6 ], [C 4 mim][BF 4 ], [C 4 mim][Cl], [C 4 mim][CF 3 COO], [C 4 mim][NTf 2 ], [C 4 mim][OMs], [C 4 mim][Br], and [C 4 mim][OAc], was studied by molecular dynamics simulations to elucidate their solvent behavior around a crystallite model of cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2021-07, Vol.28 (11), p.6767-6795
Hauptverfasser: Sánchez-Badillo, Joel A., Gallo, Marco, Rutiaga-Quiñones, José G., López-Albarrán, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6795
container_issue 11
container_start_page 6767
container_title Cellulose (London)
container_volume 28
creator Sánchez-Badillo, Joel A.
Gallo, Marco
Rutiaga-Quiñones, José G.
López-Albarrán, Pablo
description A set of imidazolium-based ionic liquids: [C 4 mim][PF 6 ], [C 4 mim][BF 4 ], [C 4 mim][Cl], [C 4 mim][CF 3 COO], [C 4 mim][NTf 2 ], [C 4 mim][OMs], [C 4 mim][Br], and [C 4 mim][OAc], was studied by molecular dynamics simulations to elucidate their solvent behavior around a crystallite model of cellulose I β , through atomistic interactions and the degree of departure of its thermodynamic properties from their solvent pure phase. These departure changes were correlated with experimental values of the Kamlet-Taft solvent basicity parameter, and it was found that, even at room temperature, density changes, and vaporization enthalpy changes can be correlated with the capacity of ionic liquids for the preconditioning of the cellulose crystallite. Hydrogen bond occupancies indicate that ionic liquids can disrupt external chains of the cellulose crystallite by replacing and reducing the strong O 6 - H ⋯ O 2 / O 3 hydrogen bonds by weak hydrogen bonds such as O 6 - H ⋯ O 4 along the interchain network. Also, radial distribution functions indicated that structural changes in the cellulose-ionic liquid mixtures did not depart significantly with respect to the pure IL structure. The results of the free energy of solvation calculations for a cellulose chain, presented the following trend: [C 4 mim][Cl] > [C 4 mim][OAc] > [C 4 mim][CF 3 COO] > [C 4 mim][Br] > [C 4 mim][OMs] > [C 4 mim][BF 4 ] > [C 4 mim][PF 6 ] > water > [C 4 mim][NTf 2 ]. It is important to emphasize, that the focus of this work was not the cellulose dissolution, but instead, the solvent behavior and cellulose preconditioning within each IL at room temperature. Our results can provide insights about the preconditioning stage of cellulose at low temperature, useful in the development of lignocellulosic materials and valuable cellulose derivatives by means of low energy requirements.
doi_str_mv 10.1007/s10570-021-03992-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2551801851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551801851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-d34420c9c70113f07159bbfb599b7daad260cde8183f25cef197baa30f6331053</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgevQmaZrJUoo_hYILFdyFTCbTpqSTNpmp9LV8EJ_J6AjuXF1yc77vwkHoksA1ARA3iQAXUAAlBTApaSGO0IhwQYuypG_HaARyKvM3k6foLKU1AEhByQi9Pwe_t22HK7vSexciDg3WLXahdQZ7t-tdjZPtsI6hb2ussbHe9z4ki-efH9jEQ-q0966zeBNq63G3yuRylV_emt7riOtDqzfOJJzcJi-63J3O0UmjfbIXv3OMXu_vXmaPxeLpYT67XRSGTmRX1GwyoWCkEUAIa0AQLquqqbiUlai1rukUTG1LUrKGcmMbIkWlNYNmylh2wsboaujdxrDrberUOvSxzScV5ZyUQEpOMkUHysSQUrSN2ka30fGgCKhvwWoQrLJg9SNYiRxiQyhluF3a-Ff9T-oLnFCBBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551801851</pqid></control><display><type>article</type><title>Solvent behavior of an ionic liquid set around a cellulose Iβ crystallite model through molecular dynamics simulations</title><source>Springer Online Journals - JUSTICE</source><creator>Sánchez-Badillo, Joel A. ; Gallo, Marco ; Rutiaga-Quiñones, José G. ; López-Albarrán, Pablo</creator><creatorcontrib>Sánchez-Badillo, Joel A. ; Gallo, Marco ; Rutiaga-Quiñones, José G. ; López-Albarrán, Pablo</creatorcontrib><description>A set of imidazolium-based ionic liquids: [C 4 mim][PF 6 ], [C 4 mim][BF 4 ], [C 4 mim][Cl], [C 4 mim][CF 3 COO], [C 4 mim][NTf 2 ], [C 4 mim][OMs], [C 4 mim][Br], and [C 4 mim][OAc], was studied by molecular dynamics simulations to elucidate their solvent behavior around a crystallite model of cellulose I β , through atomistic interactions and the degree of departure of its thermodynamic properties from their solvent pure phase. These departure changes were correlated with experimental values of the Kamlet-Taft solvent basicity parameter, and it was found that, even at room temperature, density changes, and vaporization enthalpy changes can be correlated with the capacity of ionic liquids for the preconditioning of the cellulose crystallite. Hydrogen bond occupancies indicate that ionic liquids can disrupt external chains of the cellulose crystallite by replacing and reducing the strong O 6 - H ⋯ O 2 / O 3 hydrogen bonds by weak hydrogen bonds such as O 6 - H ⋯ O 4 along the interchain network. Also, radial distribution functions indicated that structural changes in the cellulose-ionic liquid mixtures did not depart significantly with respect to the pure IL structure. The results of the free energy of solvation calculations for a cellulose chain, presented the following trend: [C 4 mim][Cl] &gt; [C 4 mim][OAc] &gt; [C 4 mim][CF 3 COO] &gt; [C 4 mim][Br] &gt; [C 4 mim][OMs] &gt; [C 4 mim][BF 4 ] &gt; [C 4 mim][PF 6 ] &gt; water &gt; [C 4 mim][NTf 2 ]. It is important to emphasize, that the focus of this work was not the cellulose dissolution, but instead, the solvent behavior and cellulose preconditioning within each IL at room temperature. Our results can provide insights about the preconditioning stage of cellulose at low temperature, useful in the development of lignocellulosic materials and valuable cellulose derivatives by means of low energy requirements.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-03992-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Basicity ; Bioorganic Chemistry ; Bonding strength ; Cellulose ; Ceramics ; Chains ; Chemistry ; Chemistry and Materials Science ; Composites ; Crystallites ; Distribution functions ; Energy requirements ; Enthalpy ; Free energy ; Glass ; Hydrogen bonds ; Ionic liquids ; Ions ; Lignocellulose ; Low temperature ; Molecular dynamics ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Preconditioning ; Radial distribution ; Room temperature ; Solvation ; Solvents ; Sustainable Development ; Thermodynamic properties ; Vaporization</subject><ispartof>Cellulose (London), 2021-07, Vol.28 (11), p.6767-6795</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-d34420c9c70113f07159bbfb599b7daad260cde8183f25cef197baa30f6331053</citedby><cites>FETCH-LOGICAL-c249t-d34420c9c70113f07159bbfb599b7daad260cde8183f25cef197baa30f6331053</cites><orcidid>0000-0001-9412-8635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-021-03992-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-021-03992-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sánchez-Badillo, Joel A.</creatorcontrib><creatorcontrib>Gallo, Marco</creatorcontrib><creatorcontrib>Rutiaga-Quiñones, José G.</creatorcontrib><creatorcontrib>López-Albarrán, Pablo</creatorcontrib><title>Solvent behavior of an ionic liquid set around a cellulose Iβ crystallite model through molecular dynamics simulations</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>A set of imidazolium-based ionic liquids: [C 4 mim][PF 6 ], [C 4 mim][BF 4 ], [C 4 mim][Cl], [C 4 mim][CF 3 COO], [C 4 mim][NTf 2 ], [C 4 mim][OMs], [C 4 mim][Br], and [C 4 mim][OAc], was studied by molecular dynamics simulations to elucidate their solvent behavior around a crystallite model of cellulose I β , through atomistic interactions and the degree of departure of its thermodynamic properties from their solvent pure phase. These departure changes were correlated with experimental values of the Kamlet-Taft solvent basicity parameter, and it was found that, even at room temperature, density changes, and vaporization enthalpy changes can be correlated with the capacity of ionic liquids for the preconditioning of the cellulose crystallite. Hydrogen bond occupancies indicate that ionic liquids can disrupt external chains of the cellulose crystallite by replacing and reducing the strong O 6 - H ⋯ O 2 / O 3 hydrogen bonds by weak hydrogen bonds such as O 6 - H ⋯ O 4 along the interchain network. Also, radial distribution functions indicated that structural changes in the cellulose-ionic liquid mixtures did not depart significantly with respect to the pure IL structure. The results of the free energy of solvation calculations for a cellulose chain, presented the following trend: [C 4 mim][Cl] &gt; [C 4 mim][OAc] &gt; [C 4 mim][CF 3 COO] &gt; [C 4 mim][Br] &gt; [C 4 mim][OMs] &gt; [C 4 mim][BF 4 ] &gt; [C 4 mim][PF 6 ] &gt; water &gt; [C 4 mim][NTf 2 ]. It is important to emphasize, that the focus of this work was not the cellulose dissolution, but instead, the solvent behavior and cellulose preconditioning within each IL at room temperature. Our results can provide insights about the preconditioning stage of cellulose at low temperature, useful in the development of lignocellulosic materials and valuable cellulose derivatives by means of low energy requirements.</description><subject>Basicity</subject><subject>Bioorganic Chemistry</subject><subject>Bonding strength</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chains</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystallites</subject><subject>Distribution functions</subject><subject>Energy requirements</subject><subject>Enthalpy</subject><subject>Free energy</subject><subject>Glass</subject><subject>Hydrogen bonds</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lignocellulose</subject><subject>Low temperature</subject><subject>Molecular dynamics</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Preconditioning</subject><subject>Radial distribution</subject><subject>Room temperature</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Sustainable Development</subject><subject>Thermodynamic properties</subject><subject>Vaporization</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgevQmaZrJUoo_hYILFdyFTCbTpqSTNpmp9LV8EJ_J6AjuXF1yc77vwkHoksA1ARA3iQAXUAAlBTApaSGO0IhwQYuypG_HaARyKvM3k6foLKU1AEhByQi9Pwe_t22HK7vSexciDg3WLXahdQZ7t-tdjZPtsI6hb2ussbHe9z4ki-efH9jEQ-q0966zeBNq63G3yuRylV_emt7riOtDqzfOJJzcJi-63J3O0UmjfbIXv3OMXu_vXmaPxeLpYT67XRSGTmRX1GwyoWCkEUAIa0AQLquqqbiUlai1rukUTG1LUrKGcmMbIkWlNYNmylh2wsboaujdxrDrberUOvSxzScV5ZyUQEpOMkUHysSQUrSN2ka30fGgCKhvwWoQrLJg9SNYiRxiQyhluF3a-Ff9T-oLnFCBBw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Sánchez-Badillo, Joel A.</creator><creator>Gallo, Marco</creator><creator>Rutiaga-Quiñones, José G.</creator><creator>López-Albarrán, Pablo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9412-8635</orcidid></search><sort><creationdate>20210701</creationdate><title>Solvent behavior of an ionic liquid set around a cellulose Iβ crystallite model through molecular dynamics simulations</title><author>Sánchez-Badillo, Joel A. ; Gallo, Marco ; Rutiaga-Quiñones, José G. ; López-Albarrán, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-d34420c9c70113f07159bbfb599b7daad260cde8183f25cef197baa30f6331053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basicity</topic><topic>Bioorganic Chemistry</topic><topic>Bonding strength</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chains</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystallites</topic><topic>Distribution functions</topic><topic>Energy requirements</topic><topic>Enthalpy</topic><topic>Free energy</topic><topic>Glass</topic><topic>Hydrogen bonds</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lignocellulose</topic><topic>Low temperature</topic><topic>Molecular dynamics</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Preconditioning</topic><topic>Radial distribution</topic><topic>Room temperature</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Sustainable Development</topic><topic>Thermodynamic properties</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Badillo, Joel A.</creatorcontrib><creatorcontrib>Gallo, Marco</creatorcontrib><creatorcontrib>Rutiaga-Quiñones, José G.</creatorcontrib><creatorcontrib>López-Albarrán, Pablo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Badillo, Joel A.</au><au>Gallo, Marco</au><au>Rutiaga-Quiñones, José G.</au><au>López-Albarrán, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent behavior of an ionic liquid set around a cellulose Iβ crystallite model through molecular dynamics simulations</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>28</volume><issue>11</issue><spage>6767</spage><epage>6795</epage><pages>6767-6795</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>A set of imidazolium-based ionic liquids: [C 4 mim][PF 6 ], [C 4 mim][BF 4 ], [C 4 mim][Cl], [C 4 mim][CF 3 COO], [C 4 mim][NTf 2 ], [C 4 mim][OMs], [C 4 mim][Br], and [C 4 mim][OAc], was studied by molecular dynamics simulations to elucidate their solvent behavior around a crystallite model of cellulose I β , through atomistic interactions and the degree of departure of its thermodynamic properties from their solvent pure phase. These departure changes were correlated with experimental values of the Kamlet-Taft solvent basicity parameter, and it was found that, even at room temperature, density changes, and vaporization enthalpy changes can be correlated with the capacity of ionic liquids for the preconditioning of the cellulose crystallite. Hydrogen bond occupancies indicate that ionic liquids can disrupt external chains of the cellulose crystallite by replacing and reducing the strong O 6 - H ⋯ O 2 / O 3 hydrogen bonds by weak hydrogen bonds such as O 6 - H ⋯ O 4 along the interchain network. Also, radial distribution functions indicated that structural changes in the cellulose-ionic liquid mixtures did not depart significantly with respect to the pure IL structure. The results of the free energy of solvation calculations for a cellulose chain, presented the following trend: [C 4 mim][Cl] &gt; [C 4 mim][OAc] &gt; [C 4 mim][CF 3 COO] &gt; [C 4 mim][Br] &gt; [C 4 mim][OMs] &gt; [C 4 mim][BF 4 ] &gt; [C 4 mim][PF 6 ] &gt; water &gt; [C 4 mim][NTf 2 ]. It is important to emphasize, that the focus of this work was not the cellulose dissolution, but instead, the solvent behavior and cellulose preconditioning within each IL at room temperature. Our results can provide insights about the preconditioning stage of cellulose at low temperature, useful in the development of lignocellulosic materials and valuable cellulose derivatives by means of low energy requirements.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-03992-7</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9412-8635</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2021-07, Vol.28 (11), p.6767-6795
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2551801851
source Springer Online Journals - JUSTICE
subjects Basicity
Bioorganic Chemistry
Bonding strength
Cellulose
Ceramics
Chains
Chemistry
Chemistry and Materials Science
Composites
Crystallites
Distribution functions
Energy requirements
Enthalpy
Free energy
Glass
Hydrogen bonds
Ionic liquids
Ions
Lignocellulose
Low temperature
Molecular dynamics
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Preconditioning
Radial distribution
Room temperature
Solvation
Solvents
Sustainable Development
Thermodynamic properties
Vaporization
title Solvent behavior of an ionic liquid set around a cellulose Iβ crystallite model through molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20behavior%20of%20an%20ionic%20liquid%20set%20around%20a%20cellulose%20I%CE%B2%20crystallite%20model%20through%20molecular%20dynamics%20simulations&rft.jtitle=Cellulose%20(London)&rft.au=S%C3%A1nchez-Badillo,%20Joel%20A.&rft.date=2021-07-01&rft.volume=28&rft.issue=11&rft.spage=6767&rft.epage=6795&rft.pages=6767-6795&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-03992-7&rft_dat=%3Cproquest_cross%3E2551801851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551801851&rft_id=info:pmid/&rfr_iscdi=true