A note on almost Cohen-Macaulay monomial ideals
Let \(R = k[x_1,\ldots, x_n]\) be the polynomial ring in \(n\) variables over a field \(k\) and let \(I\) be a monomial ideal of \(R\). In this paper, we study almost Cohen-Macaulay simplicial complex. Moreover, we characterize the almost Cohen-Macaulay polymatroidal Veronese type and transversal po...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mafi, Amir Naderi, Dler |
description | Let \(R = k[x_1,\ldots, x_n]\) be the polynomial ring in \(n\) variables over a field \(k\) and let \(I\) be a monomial ideal of \(R\). In this paper, we study almost Cohen-Macaulay simplicial complex. Moreover, we characterize the almost Cohen-Macaulay polymatroidal Veronese type and transversal polymatroidal ideals and furthermore we give some examples. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2551800759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551800759</sourcerecordid><originalsourceid>FETCH-proquest_journals_25518007593</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1TIyy9JVcjPU0jMyc0vLlFwzs9IzdP1TUxOLM1JrFTIzc_Lz81MzFHITElNzCnmYWBNA1KpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFQ-0wNDCwMDc1NKYOFUA7hQyQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551800759</pqid></control><display><type>article</type><title>A note on almost Cohen-Macaulay monomial ideals</title><source>Free E- Journals</source><creator>Mafi, Amir ; Naderi, Dler</creator><creatorcontrib>Mafi, Amir ; Naderi, Dler</creatorcontrib><description>Let \(R = k[x_1,\ldots, x_n]\) be the polynomial ring in \(n\) variables over a field \(k\) and let \(I\) be a monomial ideal of \(R\). In this paper, we study almost Cohen-Macaulay simplicial complex. Moreover, we characterize the almost Cohen-Macaulay polymatroidal Veronese type and transversal polymatroidal ideals and furthermore we give some examples.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Polynomials ; Rings (mathematics)</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mafi, Amir</creatorcontrib><creatorcontrib>Naderi, Dler</creatorcontrib><title>A note on almost Cohen-Macaulay monomial ideals</title><title>arXiv.org</title><description>Let \(R = k[x_1,\ldots, x_n]\) be the polynomial ring in \(n\) variables over a field \(k\) and let \(I\) be a monomial ideal of \(R\). In this paper, we study almost Cohen-Macaulay simplicial complex. Moreover, we characterize the almost Cohen-Macaulay polymatroidal Veronese type and transversal polymatroidal ideals and furthermore we give some examples.</description><subject>Polynomials</subject><subject>Rings (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1TIyy9JVcjPU0jMyc0vLlFwzs9IzdP1TUxOLM1JrFTIzc_Lz81MzFHITElNzCnmYWBNA1KpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFQ-0wNDCwMDc1NKYOFUA7hQyQQ</recordid><startdate>20220418</startdate><enddate>20220418</enddate><creator>Mafi, Amir</creator><creator>Naderi, Dler</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220418</creationdate><title>A note on almost Cohen-Macaulay monomial ideals</title><author>Mafi, Amir ; Naderi, Dler</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25518007593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Polynomials</topic><topic>Rings (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mafi, Amir</creatorcontrib><creatorcontrib>Naderi, Dler</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mafi, Amir</au><au>Naderi, Dler</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A note on almost Cohen-Macaulay monomial ideals</atitle><jtitle>arXiv.org</jtitle><date>2022-04-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Let \(R = k[x_1,\ldots, x_n]\) be the polynomial ring in \(n\) variables over a field \(k\) and let \(I\) be a monomial ideal of \(R\). In this paper, we study almost Cohen-Macaulay simplicial complex. Moreover, we characterize the almost Cohen-Macaulay polymatroidal Veronese type and transversal polymatroidal ideals and furthermore we give some examples.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2551800759 |
source | Free E- Journals |
subjects | Polynomials Rings (mathematics) |
title | A note on almost Cohen-Macaulay monomial ideals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20note%20on%20almost%20Cohen-Macaulay%20monomial%20ideals&rft.jtitle=arXiv.org&rft.au=Mafi,%20Amir&rft.date=2022-04-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2551800759%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551800759&rft_id=info:pmid/&rfr_iscdi=true |