Guiding Pure Vector Mode in Hollow Core Fiber Based on a Momentum Selection Theory

The attraction of hollow core fibers (HCF) lies in the long-distance mode retention ability and the transmission speed close to physical limit. Long-term efforts have been made to get a balance between large core and pure mode. However, the unique light guide mechanism of HCFs makes it a difficult q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-07, Vol.39 (14), p.4776-4783
Hauptverfasser: Guo, Huiyi, Mao, Baiwei, You, Yong, Zhang, Luhe, Chen, Siyu, Wang, Zhi, Liu, Yange
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4783
container_issue 14
container_start_page 4776
container_title Journal of lightwave technology
container_volume 39
creator Guo, Huiyi
Mao, Baiwei
You, Yong
Zhang, Luhe
Chen, Siyu
Wang, Zhi
Liu, Yange
description The attraction of hollow core fibers (HCF) lies in the long-distance mode retention ability and the transmission speed close to physical limit. Long-term efforts have been made to get a balance between large core and pure mode. However, the unique light guide mechanism of HCFs makes it a difficult question to decrease the number of the allowed modes. New theory of mode control in such fibers is desired. In this paper, we propose a new space for observing optical states based on the principle of representation transformation, so-called the wave vector space (k-space). The mode observation in the k-space provides a different perspective where the mechanical properties of the light are more obvious. We observe typical fiber modes in the k-space and clarify differences of their momentum characteristics, based on which a mode selection principle is proposed. As a theoretical proof of the principle, a novel 19-cell hollow-core photonic bandgap fiber (HC-PBGF) structure that only supports single pure vector mode is exhibited. The designed optical fiber supports only TE01 mode over a bandwidth of 80 nm with the lowest loss of 0.8 dB/km. This example proves the practicality of the proposed momentum selection theory and will inspire breakthroughs in other optical studies.
doi_str_mv 10.1109/JLT.2021.3074168
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2551364231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9409620</ieee_id><sourcerecordid>2551364231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-20fdadba8eaca6b94537fb52a874f49bbabd792befe1d0f9b236bdf9628f41f63</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87W72qMW2SkXR6jUkm4lu2W402UX6701p8TQw87zzwoPQJSUTSkl187hcTRhhdMJJKWghj9CI5rnMGKP8GI1IyXkmSyZO0VmMa0KoELIcodf50Nim-8QvQwD8AXXvA37yFnDT4YVvW_-Lpz6dZo2BgO90BIt9h3WCNtD1wwa_QZtiTVquvsCH7Tk6cbqNcHGYY_Q-u19NF9nyef4wvV1mNROizxhxVlujJehaF6YSOS-dyZmWpXCiMkYbW1bMgANqiasM44WxriqYdIK6go_R9f7vd_A_A8Rerf0QulSpWJ5TXgjGaaLInqqDjzGAU9-h2eiwVZSonTmVzKmdOXUwlyJX-0gDAP94JUjqJvwP0OdpvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551364231</pqid></control><display><type>article</type><title>Guiding Pure Vector Mode in Hollow Core Fiber Based on a Momentum Selection Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Huiyi ; Mao, Baiwei ; You, Yong ; Zhang, Luhe ; Chen, Siyu ; Wang, Zhi ; Liu, Yange</creator><creatorcontrib>Guo, Huiyi ; Mao, Baiwei ; You, Yong ; Zhang, Luhe ; Chen, Siyu ; Wang, Zhi ; Liu, Yange</creatorcontrib><description>The attraction of hollow core fibers (HCF) lies in the long-distance mode retention ability and the transmission speed close to physical limit. Long-term efforts have been made to get a balance between large core and pure mode. However, the unique light guide mechanism of HCFs makes it a difficult question to decrease the number of the allowed modes. New theory of mode control in such fibers is desired. In this paper, we propose a new space for observing optical states based on the principle of representation transformation, so-called the wave vector space (k-space). The mode observation in the k-space provides a different perspective where the mechanical properties of the light are more obvious. We observe typical fiber modes in the k-space and clarify differences of their momentum characteristics, based on which a mode selection principle is proposed. As a theoretical proof of the principle, a novel 19-cell hollow-core photonic bandgap fiber (HC-PBGF) structure that only supports single pure vector mode is exhibited. The designed optical fiber supports only TE01 mode over a bandwidth of 80 nm with the lowest loss of 0.8 dB/km. This example proves the practicality of the proposed momentum selection theory and will inspire breakthroughs in other optical studies.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3074168</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>fiber communications ; Fiber optics ; Mechanical properties ; Modal choice ; Momentum ; Nonlinear optics ; Optical fiber polarization ; Optical fiber sensors ; Optical fibers ; Optical interferometry ; Optical polarization ; Optical scattering ; Photonic band gaps ; photonic bandgap fibers ; Supports</subject><ispartof>Journal of lightwave technology, 2021-07, Vol.39 (14), p.4776-4783</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-20fdadba8eaca6b94537fb52a874f49bbabd792befe1d0f9b236bdf9628f41f63</cites><orcidid>0000-0001-5422-2686 ; 0000-0002-0293-4099 ; 0000-0002-8181-4924 ; 0000-0001-7896-6137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9409620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9409620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Huiyi</creatorcontrib><creatorcontrib>Mao, Baiwei</creatorcontrib><creatorcontrib>You, Yong</creatorcontrib><creatorcontrib>Zhang, Luhe</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Liu, Yange</creatorcontrib><title>Guiding Pure Vector Mode in Hollow Core Fiber Based on a Momentum Selection Theory</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The attraction of hollow core fibers (HCF) lies in the long-distance mode retention ability and the transmission speed close to physical limit. Long-term efforts have been made to get a balance between large core and pure mode. However, the unique light guide mechanism of HCFs makes it a difficult question to decrease the number of the allowed modes. New theory of mode control in such fibers is desired. In this paper, we propose a new space for observing optical states based on the principle of representation transformation, so-called the wave vector space (k-space). The mode observation in the k-space provides a different perspective where the mechanical properties of the light are more obvious. We observe typical fiber modes in the k-space and clarify differences of their momentum characteristics, based on which a mode selection principle is proposed. As a theoretical proof of the principle, a novel 19-cell hollow-core photonic bandgap fiber (HC-PBGF) structure that only supports single pure vector mode is exhibited. The designed optical fiber supports only TE01 mode over a bandwidth of 80 nm with the lowest loss of 0.8 dB/km. This example proves the practicality of the proposed momentum selection theory and will inspire breakthroughs in other optical studies.</description><subject>fiber communications</subject><subject>Fiber optics</subject><subject>Mechanical properties</subject><subject>Modal choice</subject><subject>Momentum</subject><subject>Nonlinear optics</subject><subject>Optical fiber polarization</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical interferometry</subject><subject>Optical polarization</subject><subject>Optical scattering</subject><subject>Photonic band gaps</subject><subject>photonic bandgap fibers</subject><subject>Supports</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87W72qMW2SkXR6jUkm4lu2W402UX6701p8TQw87zzwoPQJSUTSkl187hcTRhhdMJJKWghj9CI5rnMGKP8GI1IyXkmSyZO0VmMa0KoELIcodf50Nim-8QvQwD8AXXvA37yFnDT4YVvW_-Lpz6dZo2BgO90BIt9h3WCNtD1wwa_QZtiTVquvsCH7Tk6cbqNcHGYY_Q-u19NF9nyef4wvV1mNROizxhxVlujJehaF6YSOS-dyZmWpXCiMkYbW1bMgANqiasM44WxriqYdIK6go_R9f7vd_A_A8Rerf0QulSpWJ5TXgjGaaLInqqDjzGAU9-h2eiwVZSonTmVzKmdOXUwlyJX-0gDAP94JUjqJvwP0OdpvA</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Guo, Huiyi</creator><creator>Mao, Baiwei</creator><creator>You, Yong</creator><creator>Zhang, Luhe</creator><creator>Chen, Siyu</creator><creator>Wang, Zhi</creator><creator>Liu, Yange</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5422-2686</orcidid><orcidid>https://orcid.org/0000-0002-0293-4099</orcidid><orcidid>https://orcid.org/0000-0002-8181-4924</orcidid><orcidid>https://orcid.org/0000-0001-7896-6137</orcidid></search><sort><creationdate>20210715</creationdate><title>Guiding Pure Vector Mode in Hollow Core Fiber Based on a Momentum Selection Theory</title><author>Guo, Huiyi ; Mao, Baiwei ; You, Yong ; Zhang, Luhe ; Chen, Siyu ; Wang, Zhi ; Liu, Yange</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-20fdadba8eaca6b94537fb52a874f49bbabd792befe1d0f9b236bdf9628f41f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>fiber communications</topic><topic>Fiber optics</topic><topic>Mechanical properties</topic><topic>Modal choice</topic><topic>Momentum</topic><topic>Nonlinear optics</topic><topic>Optical fiber polarization</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical interferometry</topic><topic>Optical polarization</topic><topic>Optical scattering</topic><topic>Photonic band gaps</topic><topic>photonic bandgap fibers</topic><topic>Supports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huiyi</creatorcontrib><creatorcontrib>Mao, Baiwei</creatorcontrib><creatorcontrib>You, Yong</creatorcontrib><creatorcontrib>Zhang, Luhe</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Liu, Yange</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Huiyi</au><au>Mao, Baiwei</au><au>You, Yong</au><au>Zhang, Luhe</au><au>Chen, Siyu</au><au>Wang, Zhi</au><au>Liu, Yange</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding Pure Vector Mode in Hollow Core Fiber Based on a Momentum Selection Theory</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-07-15</date><risdate>2021</risdate><volume>39</volume><issue>14</issue><spage>4776</spage><epage>4783</epage><pages>4776-4783</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The attraction of hollow core fibers (HCF) lies in the long-distance mode retention ability and the transmission speed close to physical limit. Long-term efforts have been made to get a balance between large core and pure mode. However, the unique light guide mechanism of HCFs makes it a difficult question to decrease the number of the allowed modes. New theory of mode control in such fibers is desired. In this paper, we propose a new space for observing optical states based on the principle of representation transformation, so-called the wave vector space (k-space). The mode observation in the k-space provides a different perspective where the mechanical properties of the light are more obvious. We observe typical fiber modes in the k-space and clarify differences of their momentum characteristics, based on which a mode selection principle is proposed. As a theoretical proof of the principle, a novel 19-cell hollow-core photonic bandgap fiber (HC-PBGF) structure that only supports single pure vector mode is exhibited. The designed optical fiber supports only TE01 mode over a bandwidth of 80 nm with the lowest loss of 0.8 dB/km. This example proves the practicality of the proposed momentum selection theory and will inspire breakthroughs in other optical studies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3074168</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5422-2686</orcidid><orcidid>https://orcid.org/0000-0002-0293-4099</orcidid><orcidid>https://orcid.org/0000-0002-8181-4924</orcidid><orcidid>https://orcid.org/0000-0001-7896-6137</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-07, Vol.39 (14), p.4776-4783
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2551364231
source IEEE Electronic Library (IEL)
subjects fiber communications
Fiber optics
Mechanical properties
Modal choice
Momentum
Nonlinear optics
Optical fiber polarization
Optical fiber sensors
Optical fibers
Optical interferometry
Optical polarization
Optical scattering
Photonic band gaps
photonic bandgap fibers
Supports
title Guiding Pure Vector Mode in Hollow Core Fiber Based on a Momentum Selection Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%20Pure%20Vector%20Mode%20in%20Hollow%20Core%20Fiber%20Based%20on%20a%20Momentum%20Selection%20Theory&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Guo,%20Huiyi&rft.date=2021-07-15&rft.volume=39&rft.issue=14&rft.spage=4776&rft.epage=4783&rft.pages=4776-4783&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3074168&rft_dat=%3Cproquest_RIE%3E2551364231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551364231&rft_id=info:pmid/&rft_ieee_id=9409620&rfr_iscdi=true