Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning
With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2021-10, Vol.17 (10), p.6925-6934 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6934 |
---|---|
container_issue | 10 |
container_start_page | 6925 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Heo, SungKu Nam, KiJeon Loy-Benitez, Jorge Yoo, ChangKyoo |
description | With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads. |
doi_str_mv | 10.1109/TII.2020.3039272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2551362848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9264755</ieee_id><sourcerecordid>2551362848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKf3gjcBrzvz0aTtpe7DFTa8mXgZkuZUOrpkS1pl_96MDa_OgfO874EnSR4JnhCCy5dNVU0opnjCMCtpTq-SESkzkmLM8XXcOScpo5jdJnchbDFmeeRGyWGmepXOfPsDFi2P2rcGrZ2BDjXOo4XzUKvQt_YbfcUJv6oHjyrbdAPYHq2cMgG9qQAGOYvWQ9e3O2dUh5Q1aG4D7HQHaAawRytQ3sai--SmUV2Ah8scJ5-L-Wa6TFcf79X0dZXWtCR9yjNFQddGNwp4kYuSc03rJmfxmnGhta55nQuqiQKRcQxaFIIYXAhqmDIFGyfP5969d4cBQi-3bvA2vpQ0ymCCFtmJwmeq9i4ED43c-3an_FESLE9iZRQrT2LlRWyMPJ0jLQD84yUVWc45-wNVL3R2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362848</pqid></control><display><type>article</type><title>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Heo, SungKu ; Nam, KiJeon ; Loy-Benitez, Jorge ; Yoo, ChangKyoo</creator><creatorcontrib>Heo, SungKu ; Nam, KiJeon ; Loy-Benitez, Jorge ; Yoo, ChangKyoo</creatorcontrib><description>With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3039272</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computational modeling ; Correlation ; Data driven ; Data models ; Deep learning ; deep learning (DL) ; empirical mode decomposition (EMD) ; ensemble learning ; Forecasting ; forecasting model ; influent loads ; Load modeling ; Loads (forces) ; Machine learning ; Mathematical models ; multimodal learning ; Pollution measurement ; Predictive models ; Recurrent neural networks ; Wastewater treatment ; wastewater treatment plant (WWTP) ; Water consumption</subject><ispartof>IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6925-6934</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</citedby><cites>FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</cites><orcidid>0000-0002-8972-7470 ; 0000-0003-3447-6536 ; 0000-0003-4841-0933 ; 0000-0002-9406-7649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9264755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9264755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heo, SungKu</creatorcontrib><creatorcontrib>Nam, KiJeon</creatorcontrib><creatorcontrib>Loy-Benitez, Jorge</creatorcontrib><creatorcontrib>Yoo, ChangKyoo</creatorcontrib><title>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Data driven</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>empirical mode decomposition (EMD)</subject><subject>ensemble learning</subject><subject>Forecasting</subject><subject>forecasting model</subject><subject>influent loads</subject><subject>Load modeling</subject><subject>Loads (forces)</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>multimodal learning</subject><subject>Pollution measurement</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Wastewater treatment</subject><subject>wastewater treatment plant (WWTP)</subject><subject>Water consumption</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKf3gjcBrzvz0aTtpe7DFTa8mXgZkuZUOrpkS1pl_96MDa_OgfO874EnSR4JnhCCy5dNVU0opnjCMCtpTq-SESkzkmLM8XXcOScpo5jdJnchbDFmeeRGyWGmepXOfPsDFi2P2rcGrZ2BDjXOo4XzUKvQt_YbfcUJv6oHjyrbdAPYHq2cMgG9qQAGOYvWQ9e3O2dUh5Q1aG4D7HQHaAawRytQ3sai--SmUV2Ah8scJ5-L-Wa6TFcf79X0dZXWtCR9yjNFQddGNwp4kYuSc03rJmfxmnGhta55nQuqiQKRcQxaFIIYXAhqmDIFGyfP5969d4cBQi-3bvA2vpQ0ymCCFtmJwmeq9i4ED43c-3an_FESLE9iZRQrT2LlRWyMPJ0jLQD84yUVWc45-wNVL3R2</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Heo, SungKu</creator><creator>Nam, KiJeon</creator><creator>Loy-Benitez, Jorge</creator><creator>Yoo, ChangKyoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8972-7470</orcidid><orcidid>https://orcid.org/0000-0003-3447-6536</orcidid><orcidid>https://orcid.org/0000-0003-4841-0933</orcidid><orcidid>https://orcid.org/0000-0002-9406-7649</orcidid></search><sort><creationdate>20211001</creationdate><title>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</title><author>Heo, SungKu ; Nam, KiJeon ; Loy-Benitez, Jorge ; Yoo, ChangKyoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Data driven</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>empirical mode decomposition (EMD)</topic><topic>ensemble learning</topic><topic>Forecasting</topic><topic>forecasting model</topic><topic>influent loads</topic><topic>Load modeling</topic><topic>Loads (forces)</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>multimodal learning</topic><topic>Pollution measurement</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Wastewater treatment</topic><topic>wastewater treatment plant (WWTP)</topic><topic>Water consumption</topic><toplevel>online_resources</toplevel><creatorcontrib>Heo, SungKu</creatorcontrib><creatorcontrib>Nam, KiJeon</creatorcontrib><creatorcontrib>Loy-Benitez, Jorge</creatorcontrib><creatorcontrib>Yoo, ChangKyoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heo, SungKu</au><au>Nam, KiJeon</au><au>Loy-Benitez, Jorge</au><au>Yoo, ChangKyoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>6925</spage><epage>6934</epage><pages>6925-6934</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3039272</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8972-7470</orcidid><orcidid>https://orcid.org/0000-0003-3447-6536</orcidid><orcidid>https://orcid.org/0000-0003-4841-0933</orcidid><orcidid>https://orcid.org/0000-0002-9406-7649</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6925-6934 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2551362848 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computational modeling Correlation Data driven Data models Deep learning deep learning (DL) empirical mode decomposition (EMD) ensemble learning Forecasting forecasting model influent loads Load modeling Loads (forces) Machine learning Mathematical models multimodal learning Pollution measurement Predictive models Recurrent neural networks Wastewater treatment wastewater treatment plant (WWTP) Water consumption |
title | Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Hybrid%20Model%20for%20Forecasting%20Wastewater%20Influent%20Loads%20Based%20on%20Multimodal%20and%20Ensemble%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Heo,%20SungKu&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=6925&rft.epage=6934&rft.pages=6925-6934&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3039272&rft_dat=%3Cproquest_RIE%3E2551362848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551362848&rft_id=info:pmid/&rft_ieee_id=9264755&rfr_iscdi=true |