Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning

With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2021-10, Vol.17 (10), p.6925-6934
Hauptverfasser: Heo, SungKu, Nam, KiJeon, Loy-Benitez, Jorge, Yoo, ChangKyoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6934
container_issue 10
container_start_page 6925
container_title IEEE transactions on industrial informatics
container_volume 17
creator Heo, SungKu
Nam, KiJeon
Loy-Benitez, Jorge
Yoo, ChangKyoo
description With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads.
doi_str_mv 10.1109/TII.2020.3039272
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2551362848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9264755</ieee_id><sourcerecordid>2551362848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKf3gjcBrzvz0aTtpe7DFTa8mXgZkuZUOrpkS1pl_96MDa_OgfO874EnSR4JnhCCy5dNVU0opnjCMCtpTq-SESkzkmLM8XXcOScpo5jdJnchbDFmeeRGyWGmepXOfPsDFi2P2rcGrZ2BDjXOo4XzUKvQt_YbfcUJv6oHjyrbdAPYHq2cMgG9qQAGOYvWQ9e3O2dUh5Q1aG4D7HQHaAawRytQ3sai--SmUV2Ah8scJ5-L-Wa6TFcf79X0dZXWtCR9yjNFQddGNwp4kYuSc03rJmfxmnGhta55nQuqiQKRcQxaFIIYXAhqmDIFGyfP5969d4cBQi-3bvA2vpQ0ymCCFtmJwmeq9i4ED43c-3an_FESLE9iZRQrT2LlRWyMPJ0jLQD84yUVWc45-wNVL3R2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362848</pqid></control><display><type>article</type><title>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Heo, SungKu ; Nam, KiJeon ; Loy-Benitez, Jorge ; Yoo, ChangKyoo</creator><creatorcontrib>Heo, SungKu ; Nam, KiJeon ; Loy-Benitez, Jorge ; Yoo, ChangKyoo</creatorcontrib><description>With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3039272</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computational modeling ; Correlation ; Data driven ; Data models ; Deep learning ; deep learning (DL) ; empirical mode decomposition (EMD) ; ensemble learning ; Forecasting ; forecasting model ; influent loads ; Load modeling ; Loads (forces) ; Machine learning ; Mathematical models ; multimodal learning ; Pollution measurement ; Predictive models ; Recurrent neural networks ; Wastewater treatment ; wastewater treatment plant (WWTP) ; Water consumption</subject><ispartof>IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6925-6934</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</citedby><cites>FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</cites><orcidid>0000-0002-8972-7470 ; 0000-0003-3447-6536 ; 0000-0003-4841-0933 ; 0000-0002-9406-7649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9264755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9264755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heo, SungKu</creatorcontrib><creatorcontrib>Nam, KiJeon</creatorcontrib><creatorcontrib>Loy-Benitez, Jorge</creatorcontrib><creatorcontrib>Yoo, ChangKyoo</creatorcontrib><title>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Data driven</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>empirical mode decomposition (EMD)</subject><subject>ensemble learning</subject><subject>Forecasting</subject><subject>forecasting model</subject><subject>influent loads</subject><subject>Load modeling</subject><subject>Loads (forces)</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>multimodal learning</subject><subject>Pollution measurement</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Wastewater treatment</subject><subject>wastewater treatment plant (WWTP)</subject><subject>Water consumption</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKf3gjcBrzvz0aTtpe7DFTa8mXgZkuZUOrpkS1pl_96MDa_OgfO874EnSR4JnhCCy5dNVU0opnjCMCtpTq-SESkzkmLM8XXcOScpo5jdJnchbDFmeeRGyWGmepXOfPsDFi2P2rcGrZ2BDjXOo4XzUKvQt_YbfcUJv6oHjyrbdAPYHq2cMgG9qQAGOYvWQ9e3O2dUh5Q1aG4D7HQHaAawRytQ3sai--SmUV2Ah8scJ5-L-Wa6TFcf79X0dZXWtCR9yjNFQddGNwp4kYuSc03rJmfxmnGhta55nQuqiQKRcQxaFIIYXAhqmDIFGyfP5969d4cBQi-3bvA2vpQ0ymCCFtmJwmeq9i4ED43c-3an_FESLE9iZRQrT2LlRWyMPJ0jLQD84yUVWc45-wNVL3R2</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Heo, SungKu</creator><creator>Nam, KiJeon</creator><creator>Loy-Benitez, Jorge</creator><creator>Yoo, ChangKyoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8972-7470</orcidid><orcidid>https://orcid.org/0000-0003-3447-6536</orcidid><orcidid>https://orcid.org/0000-0003-4841-0933</orcidid><orcidid>https://orcid.org/0000-0002-9406-7649</orcidid></search><sort><creationdate>20211001</creationdate><title>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</title><author>Heo, SungKu ; Nam, KiJeon ; Loy-Benitez, Jorge ; Yoo, ChangKyoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54a2ebcdbfae5876955b2cf73291456bbbc5c762b1ae6450eb6861d0862d3ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Data driven</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>empirical mode decomposition (EMD)</topic><topic>ensemble learning</topic><topic>Forecasting</topic><topic>forecasting model</topic><topic>influent loads</topic><topic>Load modeling</topic><topic>Loads (forces)</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>multimodal learning</topic><topic>Pollution measurement</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Wastewater treatment</topic><topic>wastewater treatment plant (WWTP)</topic><topic>Water consumption</topic><toplevel>online_resources</toplevel><creatorcontrib>Heo, SungKu</creatorcontrib><creatorcontrib>Nam, KiJeon</creatorcontrib><creatorcontrib>Loy-Benitez, Jorge</creatorcontrib><creatorcontrib>Yoo, ChangKyoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heo, SungKu</au><au>Nam, KiJeon</au><au>Loy-Benitez, Jorge</au><au>Yoo, ChangKyoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>6925</spage><epage>6934</epage><pages>6925-6934</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>With the advent of the Industry 4.0 and the introduction of smart technologies in wastewater treatment plants (WWTP); forecasting influent loads is essential to regulate exaggerated operational strategies for WWTP. However, due to various water usage and sources, it is challenging to forecast the fluctuating influent loads. To deal with highly nonlinear and temporal-correlated characteristics of influent loads, in this article, we proposed hybrid influent forecasting model based on multimodal and ensemble-based deep learning (ME-DeepL). The proposed ME-DeepL forecasting model combines strength of multiple deep-learning algorithms in ensemble-learning architecture to handle propagated intrinsic sublayers by empirical mode decomposition of influent loads. Then, the proposed model was assessed to predict the loads on long-term (daily), and short-term (hourly) with multisteps forecast horizons. The experimental results revealed that ME-DeepL model exhibited superior forecasting performance in comparison to five recurrent neural network-based reference models, by capturing the informative features and temporal patterns from fluctuating influent loads.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3039272</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8972-7470</orcidid><orcidid>https://orcid.org/0000-0003-3447-6536</orcidid><orcidid>https://orcid.org/0000-0003-4841-0933</orcidid><orcidid>https://orcid.org/0000-0002-9406-7649</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.6925-6934
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2551362848
source IEEE Electronic Library (IEL)
subjects Algorithms
Computational modeling
Correlation
Data driven
Data models
Deep learning
deep learning (DL)
empirical mode decomposition (EMD)
ensemble learning
Forecasting
forecasting model
influent loads
Load modeling
Loads (forces)
Machine learning
Mathematical models
multimodal learning
Pollution measurement
Predictive models
Recurrent neural networks
Wastewater treatment
wastewater treatment plant (WWTP)
Water consumption
title Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Hybrid%20Model%20for%20Forecasting%20Wastewater%20Influent%20Loads%20Based%20on%20Multimodal%20and%20Ensemble%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Heo,%20SungKu&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=6925&rft.epage=6934&rft.pages=6925-6934&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3039272&rft_dat=%3Cproquest_RIE%3E2551362848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551362848&rft_id=info:pmid/&rft_ieee_id=9264755&rfr_iscdi=true