Imbalanced Digital Back-Propagation for Nonlinear Optical Fiber Transmissions

In the canonical digital back-propagation (CDBP) of compensating for optical fiber nonlinearity, the aim is to invert the nonlinear Schrödinger equation (NSE). Therefore, the virtual link mirrors the fiber link for all the deterministic parameters. In theory, it can eliminate the deterministic linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-07, Vol.39 (14), p.4622-4628
Hauptverfasser: Yi, Xingwen, Huang, Xiatao, Zhang, Jing, Xu, Bo, Li, Fan, Li, Zhaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4628
container_issue 14
container_start_page 4622
container_title Journal of lightwave technology
container_volume 39
creator Yi, Xingwen
Huang, Xiatao
Zhang, Jing
Xu, Bo
Li, Fan
Li, Zhaohui
description In the canonical digital back-propagation (CDBP) of compensating for optical fiber nonlinearity, the aim is to invert the nonlinear Schrödinger equation (NSE). Therefore, the virtual link mirrors the fiber link for all the deterministic parameters. In theory, it can eliminate the deterministic linear and nonlinear impairments. However, the CDBP inherently does not consider the random noise along the fiber link. Meanwhile, the ultimate aim of optical receivers is to lower the BER or increase the SNR. To this aim, the CDBP may become sub-optimum in the presence of random noise. In this paper, we explicitly prove that the performance of CDBP can be improved by simply adjusting the power map in the virtual link. We call it imbalanced DBP (iDBP), since the parameters in the virtual link do not mirror those in the fiber link. Then by tuning the signal power in the virtual link, we derive the closed-form expressions of iDBP for single-span transmissions, and show that the SNR and information capacity can be increased, compared with CDBP. For multi-span transmissions, we demonstrate the improved performance of iDBP by simulation.
doi_str_mv 10.1109/JLT.2021.3075728
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2551362817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416754</ieee_id><sourcerecordid>2551362817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8b73915e1e711d89bfe943212f14e02a596b716d2b1cc8cee3e556f0b3af3cda3</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqWwI7FEYk7xs-PYHqG0UFQoQ5ktx3mpXNIk2OnAvydVK6ZbvruTPkJugU4AqH54W64njDKYcCqFZOqMjEAIlTIG_JyMqOQ8VZJll-Qqxi2lkGVKjsj7YlfY2jYOy-TZb3xv6-TJuu_0M7Sd3djet01StSH5aJvaN2hDsup67wZs7gsMyTrYJu58jAMYr8lFZeuIN6cck6_5bD19TZerl8X0cZk6pqFPVSG5BoGAEqBUuqhQZ5wBqyBDyqzQeSEhL1kBzimHyFGIvKIFtxV3peVjcn_c7UL7s8fYm227D81waZgQwHOmQA4UPVIutDEGrEwX_M6GXwPUHKSZQZo5SDMnaUPl7ljxiPiP6wxyKTL-B9_OaBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362817</pqid></control><display><type>article</type><title>Imbalanced Digital Back-Propagation for Nonlinear Optical Fiber Transmissions</title><source>IEEE Xplore (Online service)</source><creator>Yi, Xingwen ; Huang, Xiatao ; Zhang, Jing ; Xu, Bo ; Li, Fan ; Li, Zhaohui</creator><creatorcontrib>Yi, Xingwen ; Huang, Xiatao ; Zhang, Jing ; Xu, Bo ; Li, Fan ; Li, Zhaohui</creatorcontrib><description>In the canonical digital back-propagation (CDBP) of compensating for optical fiber nonlinearity, the aim is to invert the nonlinear Schrödinger equation (NSE). Therefore, the virtual link mirrors the fiber link for all the deterministic parameters. In theory, it can eliminate the deterministic linear and nonlinear impairments. However, the CDBP inherently does not consider the random noise along the fiber link. Meanwhile, the ultimate aim of optical receivers is to lower the BER or increase the SNR. To this aim, the CDBP may become sub-optimum in the presence of random noise. In this paper, we explicitly prove that the performance of CDBP can be improved by simply adjusting the power map in the virtual link. We call it imbalanced DBP (iDBP), since the parameters in the virtual link do not mirror those in the fiber link. Then by tuning the signal power in the virtual link, we derive the closed-form expressions of iDBP for single-span transmissions, and show that the SNR and information capacity can be increased, compared with CDBP. For multi-span transmissions, we demonstrate the improved performance of iDBP by simulation.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3075728</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back propagation ; Nonlinear distortion ; Nonlinear optics ; nonlinear signal-noise interaction ; Nonlinearity ; Optical amplifiers ; Optical fiber amplifiers ; optical fiber communication ; Optical fiber dispersion ; Optical fiber networks ; Optical fiber polarization ; Optical fibers ; optical Kerr effect ; Optical receivers ; Optimized production technology ; Parameters ; Random noise ; Schrodinger equation ; Signal to noise ratio</subject><ispartof>Journal of lightwave technology, 2021-07, Vol.39 (14), p.4622-4628</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8b73915e1e711d89bfe943212f14e02a596b716d2b1cc8cee3e556f0b3af3cda3</citedby><cites>FETCH-LOGICAL-c291t-8b73915e1e711d89bfe943212f14e02a596b716d2b1cc8cee3e556f0b3af3cda3</cites><orcidid>0000-0002-6151-8642 ; 0000-0002-7440-3545 ; 0000-0001-8135-8124 ; 0000-0002-8771-8992 ; 0000-0001-7815-4542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9416754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yi, Xingwen</creatorcontrib><creatorcontrib>Huang, Xiatao</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Li, Zhaohui</creatorcontrib><title>Imbalanced Digital Back-Propagation for Nonlinear Optical Fiber Transmissions</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In the canonical digital back-propagation (CDBP) of compensating for optical fiber nonlinearity, the aim is to invert the nonlinear Schrödinger equation (NSE). Therefore, the virtual link mirrors the fiber link for all the deterministic parameters. In theory, it can eliminate the deterministic linear and nonlinear impairments. However, the CDBP inherently does not consider the random noise along the fiber link. Meanwhile, the ultimate aim of optical receivers is to lower the BER or increase the SNR. To this aim, the CDBP may become sub-optimum in the presence of random noise. In this paper, we explicitly prove that the performance of CDBP can be improved by simply adjusting the power map in the virtual link. We call it imbalanced DBP (iDBP), since the parameters in the virtual link do not mirror those in the fiber link. Then by tuning the signal power in the virtual link, we derive the closed-form expressions of iDBP for single-span transmissions, and show that the SNR and information capacity can be increased, compared with CDBP. For multi-span transmissions, we demonstrate the improved performance of iDBP by simulation.</description><subject>Back propagation</subject><subject>Nonlinear distortion</subject><subject>Nonlinear optics</subject><subject>nonlinear signal-noise interaction</subject><subject>Nonlinearity</subject><subject>Optical amplifiers</subject><subject>Optical fiber amplifiers</subject><subject>optical fiber communication</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber networks</subject><subject>Optical fiber polarization</subject><subject>Optical fibers</subject><subject>optical Kerr effect</subject><subject>Optical receivers</subject><subject>Optimized production technology</subject><subject>Parameters</subject><subject>Random noise</subject><subject>Schrodinger equation</subject><subject>Signal to noise ratio</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAUhC0EEqWwI7FEYk7xs-PYHqG0UFQoQ5ktx3mpXNIk2OnAvydVK6ZbvruTPkJugU4AqH54W64njDKYcCqFZOqMjEAIlTIG_JyMqOQ8VZJll-Qqxi2lkGVKjsj7YlfY2jYOy-TZb3xv6-TJuu_0M7Sd3djet01StSH5aJvaN2hDsup67wZs7gsMyTrYJu58jAMYr8lFZeuIN6cck6_5bD19TZerl8X0cZk6pqFPVSG5BoGAEqBUuqhQZ5wBqyBDyqzQeSEhL1kBzimHyFGIvKIFtxV3peVjcn_c7UL7s8fYm227D81waZgQwHOmQA4UPVIutDEGrEwX_M6GXwPUHKSZQZo5SDMnaUPl7ljxiPiP6wxyKTL-B9_OaBU</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Yi, Xingwen</creator><creator>Huang, Xiatao</creator><creator>Zhang, Jing</creator><creator>Xu, Bo</creator><creator>Li, Fan</creator><creator>Li, Zhaohui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6151-8642</orcidid><orcidid>https://orcid.org/0000-0002-7440-3545</orcidid><orcidid>https://orcid.org/0000-0001-8135-8124</orcidid><orcidid>https://orcid.org/0000-0002-8771-8992</orcidid><orcidid>https://orcid.org/0000-0001-7815-4542</orcidid></search><sort><creationdate>20210715</creationdate><title>Imbalanced Digital Back-Propagation for Nonlinear Optical Fiber Transmissions</title><author>Yi, Xingwen ; Huang, Xiatao ; Zhang, Jing ; Xu, Bo ; Li, Fan ; Li, Zhaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8b73915e1e711d89bfe943212f14e02a596b716d2b1cc8cee3e556f0b3af3cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Back propagation</topic><topic>Nonlinear distortion</topic><topic>Nonlinear optics</topic><topic>nonlinear signal-noise interaction</topic><topic>Nonlinearity</topic><topic>Optical amplifiers</topic><topic>Optical fiber amplifiers</topic><topic>optical fiber communication</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber networks</topic><topic>Optical fiber polarization</topic><topic>Optical fibers</topic><topic>optical Kerr effect</topic><topic>Optical receivers</topic><topic>Optimized production technology</topic><topic>Parameters</topic><topic>Random noise</topic><topic>Schrodinger equation</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Xingwen</creatorcontrib><creatorcontrib>Huang, Xiatao</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Li, Zhaohui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi, Xingwen</au><au>Huang, Xiatao</au><au>Zhang, Jing</au><au>Xu, Bo</au><au>Li, Fan</au><au>Li, Zhaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imbalanced Digital Back-Propagation for Nonlinear Optical Fiber Transmissions</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-07-15</date><risdate>2021</risdate><volume>39</volume><issue>14</issue><spage>4622</spage><epage>4628</epage><pages>4622-4628</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In the canonical digital back-propagation (CDBP) of compensating for optical fiber nonlinearity, the aim is to invert the nonlinear Schrödinger equation (NSE). Therefore, the virtual link mirrors the fiber link for all the deterministic parameters. In theory, it can eliminate the deterministic linear and nonlinear impairments. However, the CDBP inherently does not consider the random noise along the fiber link. Meanwhile, the ultimate aim of optical receivers is to lower the BER or increase the SNR. To this aim, the CDBP may become sub-optimum in the presence of random noise. In this paper, we explicitly prove that the performance of CDBP can be improved by simply adjusting the power map in the virtual link. We call it imbalanced DBP (iDBP), since the parameters in the virtual link do not mirror those in the fiber link. Then by tuning the signal power in the virtual link, we derive the closed-form expressions of iDBP for single-span transmissions, and show that the SNR and information capacity can be increased, compared with CDBP. For multi-span transmissions, we demonstrate the improved performance of iDBP by simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3075728</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6151-8642</orcidid><orcidid>https://orcid.org/0000-0002-7440-3545</orcidid><orcidid>https://orcid.org/0000-0001-8135-8124</orcidid><orcidid>https://orcid.org/0000-0002-8771-8992</orcidid><orcidid>https://orcid.org/0000-0001-7815-4542</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-07, Vol.39 (14), p.4622-4628
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2551362817
source IEEE Xplore (Online service)
subjects Back propagation
Nonlinear distortion
Nonlinear optics
nonlinear signal-noise interaction
Nonlinearity
Optical amplifiers
Optical fiber amplifiers
optical fiber communication
Optical fiber dispersion
Optical fiber networks
Optical fiber polarization
Optical fibers
optical Kerr effect
Optical receivers
Optimized production technology
Parameters
Random noise
Schrodinger equation
Signal to noise ratio
title Imbalanced Digital Back-Propagation for Nonlinear Optical Fiber Transmissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imbalanced%20Digital%20Back-Propagation%20for%20Nonlinear%20Optical%20Fiber%20Transmissions&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Yi,%20Xingwen&rft.date=2021-07-15&rft.volume=39&rft.issue=14&rft.spage=4622&rft.epage=4628&rft.pages=4622-4628&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3075728&rft_dat=%3Cproquest_RIE%3E2551362817%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551362817&rft_id=info:pmid/&rft_ieee_id=9416754&rfr_iscdi=true