Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems

Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2021-10, Vol.17 (10), p.7040-7049
Hauptverfasser: Ganjkhani, Mehdi, Gilanifar, Mostafa, Giraldo, Jairo, Parvania, Masood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7049
container_issue 10
container_start_page 7040
container_title IEEE transactions on industrial informatics
container_volume 17
creator Ganjkhani, Mehdi
Gilanifar, Mostafa
Giraldo, Jairo
Parvania, Masood
description Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays.
doi_str_mv 10.1109/TII.2021.3065080
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2551362419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373934</ieee_id><sourcerecordid>2551362419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFbvgpdFz1tnMpvt5ljqV6GgoJ5Dmp1qSrupSYrsv3e1xdMMM887DE-WXSKMEEHdvs1mIwECRwSVhBqOsgGqEgsACcd9LyUWJIBOs7MYVwA0BlKDTM_axB_BJG7yabfgkJu2yV8-u-isWeeT1m_Musvn3prkfPu3na5NjG7pDiPX5i_-u0_euZiCW-z-pq9dTLyJ59nJ0qwjXxzqMHt_uH-bPhXz58fZdDIvLGGdCmtR1FiXctxUtVIGkGtsSqHIKjDL2gjBBqhckGy4IgOWGGRlJKuyghJomF3v7_qYnI7WJbaf1rct26RR1SARe-hmD22D_9pxTHrld6Ht_9Ki90OVKFH1FOwpG3yMgZd6G9zGhE4j6F_Xunetf13rg-s-crWPOGb-xxWNSVFJPz5VeUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362419</pqid></control><display><type>article</type><title>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ganjkhani, Mehdi ; Gilanifar, Mostafa ; Giraldo, Jairo ; Parvania, Masood</creator><creatorcontrib>Ganjkhani, Mehdi ; Gilanifar, Mostafa ; Giraldo, Jairo ; Parvania, Masood ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3065080</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly location and classification ; Artificial neural networks ; Automation &amp; Control Systems ; Circuit faults ; Circuits ; Classification ; Communication networks ; Computer Science ; cyber attack ; Cyberattack ; deep neural network ; Electric potential ; Electric power distribution ; Electronic devices ; Engineering ; Fault location ; Indicators ; Power distribution ; power distribution systems ; Protocols ; Relays ; Renewable energy sources ; Short circuit currents ; Situational awareness ; System effectiveness ; Voltage ; Voltage measurement</subject><ispartof>IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.7040-7049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</citedby><cites>FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</cites><orcidid>0000-0002-0000-6096 ; 0000-0002-8666-3619 ; 0000-0002-8891-7010 ; 0000-0001-8072-2676 ; 0000000286663619 ; 0000000200006096 ; 0000000288917010 ; 0000000180722676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1980511$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganjkhani, Mehdi</creatorcontrib><creatorcontrib>Gilanifar, Mostafa</creatorcontrib><creatorcontrib>Giraldo, Jairo</creatorcontrib><creatorcontrib>Parvania, Masood</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays.</description><subject>Anomalies</subject><subject>Anomaly location and classification</subject><subject>Artificial neural networks</subject><subject>Automation &amp; Control Systems</subject><subject>Circuit faults</subject><subject>Circuits</subject><subject>Classification</subject><subject>Communication networks</subject><subject>Computer Science</subject><subject>cyber attack</subject><subject>Cyberattack</subject><subject>deep neural network</subject><subject>Electric potential</subject><subject>Electric power distribution</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Fault location</subject><subject>Indicators</subject><subject>Power distribution</subject><subject>power distribution systems</subject><subject>Protocols</subject><subject>Relays</subject><subject>Renewable energy sources</subject><subject>Short circuit currents</subject><subject>Situational awareness</subject><subject>System effectiveness</subject><subject>Voltage</subject><subject>Voltage measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRsFbvgpdFz1tnMpvt5ljqV6GgoJ5Dmp1qSrupSYrsv3e1xdMMM887DE-WXSKMEEHdvs1mIwECRwSVhBqOsgGqEgsACcd9LyUWJIBOs7MYVwA0BlKDTM_axB_BJG7yabfgkJu2yV8-u-isWeeT1m_Musvn3prkfPu3na5NjG7pDiPX5i_-u0_euZiCW-z-pq9dTLyJ59nJ0qwjXxzqMHt_uH-bPhXz58fZdDIvLGGdCmtR1FiXctxUtVIGkGtsSqHIKjDL2gjBBqhckGy4IgOWGGRlJKuyghJomF3v7_qYnI7WJbaf1rct26RR1SARe-hmD22D_9pxTHrld6Ht_9Ki90OVKFH1FOwpG3yMgZd6G9zGhE4j6F_Xunetf13rg-s-crWPOGb-xxWNSVFJPz5VeUk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ganjkhani, Mehdi</creator><creator>Gilanifar, Mostafa</creator><creator>Giraldo, Jairo</creator><creator>Parvania, Masood</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0000-6096</orcidid><orcidid>https://orcid.org/0000-0002-8666-3619</orcidid><orcidid>https://orcid.org/0000-0002-8891-7010</orcidid><orcidid>https://orcid.org/0000-0001-8072-2676</orcidid><orcidid>https://orcid.org/0000000286663619</orcidid><orcidid>https://orcid.org/0000000200006096</orcidid><orcidid>https://orcid.org/0000000288917010</orcidid><orcidid>https://orcid.org/0000000180722676</orcidid></search><sort><creationdate>20211001</creationdate><title>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</title><author>Ganjkhani, Mehdi ; Gilanifar, Mostafa ; Giraldo, Jairo ; Parvania, Masood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anomalies</topic><topic>Anomaly location and classification</topic><topic>Artificial neural networks</topic><topic>Automation &amp; Control Systems</topic><topic>Circuit faults</topic><topic>Circuits</topic><topic>Classification</topic><topic>Communication networks</topic><topic>Computer Science</topic><topic>cyber attack</topic><topic>Cyberattack</topic><topic>deep neural network</topic><topic>Electric potential</topic><topic>Electric power distribution</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Fault location</topic><topic>Indicators</topic><topic>Power distribution</topic><topic>power distribution systems</topic><topic>Protocols</topic><topic>Relays</topic><topic>Renewable energy sources</topic><topic>Short circuit currents</topic><topic>Situational awareness</topic><topic>System effectiveness</topic><topic>Voltage</topic><topic>Voltage measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganjkhani, Mehdi</creatorcontrib><creatorcontrib>Gilanifar, Mostafa</creatorcontrib><creatorcontrib>Giraldo, Jairo</creatorcontrib><creatorcontrib>Parvania, Masood</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganjkhani, Mehdi</au><au>Gilanifar, Mostafa</au><au>Giraldo, Jairo</au><au>Parvania, Masood</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>7040</spage><epage>7049</epage><pages>7040-7049</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3065080</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0000-6096</orcidid><orcidid>https://orcid.org/0000-0002-8666-3619</orcidid><orcidid>https://orcid.org/0000-0002-8891-7010</orcidid><orcidid>https://orcid.org/0000-0001-8072-2676</orcidid><orcidid>https://orcid.org/0000000286663619</orcidid><orcidid>https://orcid.org/0000000200006096</orcidid><orcidid>https://orcid.org/0000000288917010</orcidid><orcidid>https://orcid.org/0000000180722676</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.7040-7049
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2551362419
source IEEE Electronic Library (IEL)
subjects Anomalies
Anomaly location and classification
Artificial neural networks
Automation & Control Systems
Circuit faults
Circuits
Classification
Communication networks
Computer Science
cyber attack
Cyberattack
deep neural network
Electric potential
Electric power distribution
Electronic devices
Engineering
Fault location
Indicators
Power distribution
power distribution systems
Protocols
Relays
Renewable energy sources
Short circuit currents
Situational awareness
System effectiveness
Voltage
Voltage measurement
title Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Cyber%20and%20Physical%20Anomaly%20Location%20and%20Classification%20in%20Power%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Ganjkhani,%20Mehdi&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=7040&rft.epage=7049&rft.pages=7040-7049&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3065080&rft_dat=%3Cproquest_RIE%3E2551362419%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551362419&rft_id=info:pmid/&rft_ieee_id=9373934&rfr_iscdi=true