Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems
Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2021-10, Vol.17 (10), p.7040-7049 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7049 |
---|---|
container_issue | 10 |
container_start_page | 7040 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Ganjkhani, Mehdi Gilanifar, Mostafa Giraldo, Jairo Parvania, Masood |
description | Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays. |
doi_str_mv | 10.1109/TII.2021.3065080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2551362419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373934</ieee_id><sourcerecordid>2551362419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFbvgpdFz1tnMpvt5ljqV6GgoJ5Dmp1qSrupSYrsv3e1xdMMM887DE-WXSKMEEHdvs1mIwECRwSVhBqOsgGqEgsACcd9LyUWJIBOs7MYVwA0BlKDTM_axB_BJG7yabfgkJu2yV8-u-isWeeT1m_Musvn3prkfPu3na5NjG7pDiPX5i_-u0_euZiCW-z-pq9dTLyJ59nJ0qwjXxzqMHt_uH-bPhXz58fZdDIvLGGdCmtR1FiXctxUtVIGkGtsSqHIKjDL2gjBBqhckGy4IgOWGGRlJKuyghJomF3v7_qYnI7WJbaf1rct26RR1SARe-hmD22D_9pxTHrld6Ht_9Ki90OVKFH1FOwpG3yMgZd6G9zGhE4j6F_Xunetf13rg-s-crWPOGb-xxWNSVFJPz5VeUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362419</pqid></control><display><type>article</type><title>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ganjkhani, Mehdi ; Gilanifar, Mostafa ; Giraldo, Jairo ; Parvania, Masood</creator><creatorcontrib>Ganjkhani, Mehdi ; Gilanifar, Mostafa ; Giraldo, Jairo ; Parvania, Masood ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3065080</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly location and classification ; Artificial neural networks ; Automation & Control Systems ; Circuit faults ; Circuits ; Classification ; Communication networks ; Computer Science ; cyber attack ; Cyberattack ; deep neural network ; Electric potential ; Electric power distribution ; Electronic devices ; Engineering ; Fault location ; Indicators ; Power distribution ; power distribution systems ; Protocols ; Relays ; Renewable energy sources ; Short circuit currents ; Situational awareness ; System effectiveness ; Voltage ; Voltage measurement</subject><ispartof>IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.7040-7049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</citedby><cites>FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</cites><orcidid>0000-0002-0000-6096 ; 0000-0002-8666-3619 ; 0000-0002-8891-7010 ; 0000-0001-8072-2676 ; 0000000286663619 ; 0000000200006096 ; 0000000288917010 ; 0000000180722676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1980511$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganjkhani, Mehdi</creatorcontrib><creatorcontrib>Gilanifar, Mostafa</creatorcontrib><creatorcontrib>Giraldo, Jairo</creatorcontrib><creatorcontrib>Parvania, Masood</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays.</description><subject>Anomalies</subject><subject>Anomaly location and classification</subject><subject>Artificial neural networks</subject><subject>Automation & Control Systems</subject><subject>Circuit faults</subject><subject>Circuits</subject><subject>Classification</subject><subject>Communication networks</subject><subject>Computer Science</subject><subject>cyber attack</subject><subject>Cyberattack</subject><subject>deep neural network</subject><subject>Electric potential</subject><subject>Electric power distribution</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Fault location</subject><subject>Indicators</subject><subject>Power distribution</subject><subject>power distribution systems</subject><subject>Protocols</subject><subject>Relays</subject><subject>Renewable energy sources</subject><subject>Short circuit currents</subject><subject>Situational awareness</subject><subject>System effectiveness</subject><subject>Voltage</subject><subject>Voltage measurement</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRsFbvgpdFz1tnMpvt5ljqV6GgoJ5Dmp1qSrupSYrsv3e1xdMMM887DE-WXSKMEEHdvs1mIwECRwSVhBqOsgGqEgsACcd9LyUWJIBOs7MYVwA0BlKDTM_axB_BJG7yabfgkJu2yV8-u-isWeeT1m_Musvn3prkfPu3na5NjG7pDiPX5i_-u0_euZiCW-z-pq9dTLyJ59nJ0qwjXxzqMHt_uH-bPhXz58fZdDIvLGGdCmtR1FiXctxUtVIGkGtsSqHIKjDL2gjBBqhckGy4IgOWGGRlJKuyghJomF3v7_qYnI7WJbaf1rct26RR1SARe-hmD22D_9pxTHrld6Ht_9Ki90OVKFH1FOwpG3yMgZd6G9zGhE4j6F_Xunetf13rg-s-crWPOGb-xxWNSVFJPz5VeUk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ganjkhani, Mehdi</creator><creator>Gilanifar, Mostafa</creator><creator>Giraldo, Jairo</creator><creator>Parvania, Masood</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0000-6096</orcidid><orcidid>https://orcid.org/0000-0002-8666-3619</orcidid><orcidid>https://orcid.org/0000-0002-8891-7010</orcidid><orcidid>https://orcid.org/0000-0001-8072-2676</orcidid><orcidid>https://orcid.org/0000000286663619</orcidid><orcidid>https://orcid.org/0000000200006096</orcidid><orcidid>https://orcid.org/0000000288917010</orcidid><orcidid>https://orcid.org/0000000180722676</orcidid></search><sort><creationdate>20211001</creationdate><title>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</title><author>Ganjkhani, Mehdi ; Gilanifar, Mostafa ; Giraldo, Jairo ; Parvania, Masood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-cc12818457d6899a01e81d4293c90af8a22ea034b35de63a0c3e056a5e9460403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anomalies</topic><topic>Anomaly location and classification</topic><topic>Artificial neural networks</topic><topic>Automation & Control Systems</topic><topic>Circuit faults</topic><topic>Circuits</topic><topic>Classification</topic><topic>Communication networks</topic><topic>Computer Science</topic><topic>cyber attack</topic><topic>Cyberattack</topic><topic>deep neural network</topic><topic>Electric potential</topic><topic>Electric power distribution</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Fault location</topic><topic>Indicators</topic><topic>Power distribution</topic><topic>power distribution systems</topic><topic>Protocols</topic><topic>Relays</topic><topic>Renewable energy sources</topic><topic>Short circuit currents</topic><topic>Situational awareness</topic><topic>System effectiveness</topic><topic>Voltage</topic><topic>Voltage measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganjkhani, Mehdi</creatorcontrib><creatorcontrib>Gilanifar, Mostafa</creatorcontrib><creatorcontrib>Giraldo, Jairo</creatorcontrib><creatorcontrib>Parvania, Masood</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganjkhani, Mehdi</au><au>Gilanifar, Mostafa</au><au>Giraldo, Jairo</au><au>Parvania, Masood</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>7040</spage><epage>7049</epage><pages>7040-7049</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Identifying the anomaly location and type (fault or attack) is of paramount importance for enhancing cyber-physical situational awareness, and taking informed and effective mitigation actions in power distribution systems with an increasing number of attack points in distributed and renewable energy sources. This article proposes the fault and attack location and classification (FALCON) system to classify and locate cyber and physical anomalies, including false data injection attacks on protection devices, replay attacks on communication networks, and physical faults on distribution lines. The proposed system takes as input the transient short-circuit current and voltage measured by protection relays, the relays command status as well as the fault alarm from fault indicators, which is fed into a deep neural network that classifies and identifies the location of the fault and attacks in the distribution system. Numerical studies demonstrate FALCON's capability to classify and locate multiple cyber and physical anomalies with more than 98% accuracy, even when multiple devices are simultaneously compromised. Furthermore, the impact of different sets of input data is explored to highlight the importance of fault indicators, fault voltage data, and data collected from the RES relays.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3065080</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0000-6096</orcidid><orcidid>https://orcid.org/0000-0002-8666-3619</orcidid><orcidid>https://orcid.org/0000-0002-8891-7010</orcidid><orcidid>https://orcid.org/0000-0001-8072-2676</orcidid><orcidid>https://orcid.org/0000000286663619</orcidid><orcidid>https://orcid.org/0000000200006096</orcidid><orcidid>https://orcid.org/0000000288917010</orcidid><orcidid>https://orcid.org/0000000180722676</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-10, Vol.17 (10), p.7040-7049 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2551362419 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Anomaly location and classification Artificial neural networks Automation & Control Systems Circuit faults Circuits Classification Communication networks Computer Science cyber attack Cyberattack deep neural network Electric potential Electric power distribution Electronic devices Engineering Fault location Indicators Power distribution power distribution systems Protocols Relays Renewable energy sources Short circuit currents Situational awareness System effectiveness Voltage Voltage measurement |
title | Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Cyber%20and%20Physical%20Anomaly%20Location%20and%20Classification%20in%20Power%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Ganjkhani,%20Mehdi&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=7040&rft.epage=7049&rft.pages=7040-7049&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3065080&rft_dat=%3Cproquest_RIE%3E2551362419%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551362419&rft_id=info:pmid/&rft_ieee_id=9373934&rfr_iscdi=true |