Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition
With the increasing demand for large-area graphene due to its versatility, there is an imminent requirement for scalable, low-temperature, and high yield growth procedures. In this study, the fabrication of large-area graphene nanoplatelets directly grown on tungsten (W) nanoparticles coated c-Si an...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2021-04, Vol.411, p.126995, Article 126995 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 126995 |
container_title | Surface & coatings technology |
container_volume | 411 |
creator | Anuar, Nur Afira binti Nor, Nurul Hidayah Mohamad Awang, Rozidawati binti Nakajima, Hideki Tunmee, Sarayut Tripathi, Manoj Dalton, Alan Goh, Boon Tong |
description | With the increasing demand for large-area graphene due to its versatility, there is an imminent requirement for scalable, low-temperature, and high yield growth procedures. In this study, the fabrication of large-area graphene nanoplatelets directly grown on tungsten (W) nanoparticles coated c-Si and quartz substrates by hot-wire chemical vapour deposition was demonstrated. A large area of single and bilayer graphene grown over W adatoms via controlled argon (Ar) plasma treatment varied from 0.5 to 10 min. The finest quality of continuous graphene layer up to an area of 2.56 × 104 μm2 was prepared at the optimised condition of 1 min, and verified through transmission electron microscopy in conjunction with energy dispersive X-ray, atomic force microscopy, and Raman spectroscopy. The prepared thin film of the carbon layer has excellent optical transparency (> 70%) and lower sheet resistance up to 718.3 Ω/sq. A detailed growth mechanism is proposed for the nucleation of graphene nanoplatelets under the influence of Ar plasma treatment on W nanoparticles.
[Display omitted]
•HWCVD grows graphene nanoplatelets at low temperature.•The numbers of layer of graphene nanoplatelets strongly depend on grains size of W nanoparticles.•The prepared thin film of the carbon layer has excellent optical transparency and lower sheet resistance. |
doi_str_mv | 10.1016/j.surfcoat.2021.126995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2551251819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897221001687</els_id><sourcerecordid>2551251819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-aa73b8b67ced92aa1ae21f0ca4af667fc1cff8304e0d65dd5d67661bd9edca4c3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BSl4bk3SNmlvyuI_WPCieAxpMrEt3aYm6S5-e7NUz55mDu-9efND6JrgjGDCbvvMz84oK0NGMSUZoayuyxO0IhWv0zwv-ClaYVrytKo5PUcX3vcYY8LrYoU-tvaQBthN4GSYHSSfzh5Cm1gTNzm1MEIyytFOgwwwQPBJ8520NqSHLopVC7tOySHZy8nOLtEwWd-Fzo6X6MzIwcPV71yj98eHt81zun19etncb1OVFzikUvK8qRrGFeiaSkkkUGKwkoU0jHGjiDKmynEBWLNS61IzzhhpdA06ilS-RjdL7uTs1ww-iD4WGeNJQcuS0JJUpI4qtqiUs947MGJy3U66b0GwOEIUvfiDKI4QxQIxGu8WI8Qf9h044VUHY2wb31dBaNv9F_EDGiCBdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551251819</pqid></control><display><type>article</type><title>Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Anuar, Nur Afira binti ; Nor, Nurul Hidayah Mohamad ; Awang, Rozidawati binti ; Nakajima, Hideki ; Tunmee, Sarayut ; Tripathi, Manoj ; Dalton, Alan ; Goh, Boon Tong</creator><creatorcontrib>Anuar, Nur Afira binti ; Nor, Nurul Hidayah Mohamad ; Awang, Rozidawati binti ; Nakajima, Hideki ; Tunmee, Sarayut ; Tripathi, Manoj ; Dalton, Alan ; Goh, Boon Tong</creatorcontrib><description>With the increasing demand for large-area graphene due to its versatility, there is an imminent requirement for scalable, low-temperature, and high yield growth procedures. In this study, the fabrication of large-area graphene nanoplatelets directly grown on tungsten (W) nanoparticles coated c-Si and quartz substrates by hot-wire chemical vapour deposition was demonstrated. A large area of single and bilayer graphene grown over W adatoms via controlled argon (Ar) plasma treatment varied from 0.5 to 10 min. The finest quality of continuous graphene layer up to an area of 2.56 × 104 μm2 was prepared at the optimised condition of 1 min, and verified through transmission electron microscopy in conjunction with energy dispersive X-ray, atomic force microscopy, and Raman spectroscopy. The prepared thin film of the carbon layer has excellent optical transparency (> 70%) and lower sheet resistance up to 718.3 Ω/sq. A detailed growth mechanism is proposed for the nucleation of graphene nanoplatelets under the influence of Ar plasma treatment on W nanoparticles.
[Display omitted]
•HWCVD grows graphene nanoplatelets at low temperature.•The numbers of layer of graphene nanoplatelets strongly depend on grains size of W nanoparticles.•The prepared thin film of the carbon layer has excellent optical transparency and lower sheet resistance.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2021.126995</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adatoms ; Argon plasma ; Atomic force microscopy ; Bilayers ; Chemical vapor deposition ; Graphene ; HWCVD ; Low temperature ; Microscopy ; Nanoparticles ; Nanoplatelets ; Nucleation ; Raman mapping ; Raman spectroscopy ; Silicon substrates ; Thin films ; Tungsten ; Tungsten nanoparticles ; Wire</subject><ispartof>Surface & coatings technology, 2021-04, Vol.411, p.126995, Article 126995</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-aa73b8b67ced92aa1ae21f0ca4af667fc1cff8304e0d65dd5d67661bd9edca4c3</citedby><cites>FETCH-LOGICAL-c340t-aa73b8b67ced92aa1ae21f0ca4af667fc1cff8304e0d65dd5d67661bd9edca4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2021.126995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Anuar, Nur Afira binti</creatorcontrib><creatorcontrib>Nor, Nurul Hidayah Mohamad</creatorcontrib><creatorcontrib>Awang, Rozidawati binti</creatorcontrib><creatorcontrib>Nakajima, Hideki</creatorcontrib><creatorcontrib>Tunmee, Sarayut</creatorcontrib><creatorcontrib>Tripathi, Manoj</creatorcontrib><creatorcontrib>Dalton, Alan</creatorcontrib><creatorcontrib>Goh, Boon Tong</creatorcontrib><title>Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition</title><title>Surface & coatings technology</title><description>With the increasing demand for large-area graphene due to its versatility, there is an imminent requirement for scalable, low-temperature, and high yield growth procedures. In this study, the fabrication of large-area graphene nanoplatelets directly grown on tungsten (W) nanoparticles coated c-Si and quartz substrates by hot-wire chemical vapour deposition was demonstrated. A large area of single and bilayer graphene grown over W adatoms via controlled argon (Ar) plasma treatment varied from 0.5 to 10 min. The finest quality of continuous graphene layer up to an area of 2.56 × 104 μm2 was prepared at the optimised condition of 1 min, and verified through transmission electron microscopy in conjunction with energy dispersive X-ray, atomic force microscopy, and Raman spectroscopy. The prepared thin film of the carbon layer has excellent optical transparency (> 70%) and lower sheet resistance up to 718.3 Ω/sq. A detailed growth mechanism is proposed for the nucleation of graphene nanoplatelets under the influence of Ar plasma treatment on W nanoparticles.
[Display omitted]
•HWCVD grows graphene nanoplatelets at low temperature.•The numbers of layer of graphene nanoplatelets strongly depend on grains size of W nanoparticles.•The prepared thin film of the carbon layer has excellent optical transparency and lower sheet resistance.</description><subject>Adatoms</subject><subject>Argon plasma</subject><subject>Atomic force microscopy</subject><subject>Bilayers</subject><subject>Chemical vapor deposition</subject><subject>Graphene</subject><subject>HWCVD</subject><subject>Low temperature</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanoplatelets</subject><subject>Nucleation</subject><subject>Raman mapping</subject><subject>Raman spectroscopy</subject><subject>Silicon substrates</subject><subject>Thin films</subject><subject>Tungsten</subject><subject>Tungsten nanoparticles</subject><subject>Wire</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BSl4bk3SNmlvyuI_WPCieAxpMrEt3aYm6S5-e7NUz55mDu-9efND6JrgjGDCbvvMz84oK0NGMSUZoayuyxO0IhWv0zwv-ClaYVrytKo5PUcX3vcYY8LrYoU-tvaQBthN4GSYHSSfzh5Cm1gTNzm1MEIyytFOgwwwQPBJ8520NqSHLopVC7tOySHZy8nOLtEwWd-Fzo6X6MzIwcPV71yj98eHt81zun19etncb1OVFzikUvK8qRrGFeiaSkkkUGKwkoU0jHGjiDKmynEBWLNS61IzzhhpdA06ilS-RjdL7uTs1ww-iD4WGeNJQcuS0JJUpI4qtqiUs947MGJy3U66b0GwOEIUvfiDKI4QxQIxGu8WI8Qf9h044VUHY2wb31dBaNv9F_EDGiCBdA</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Anuar, Nur Afira binti</creator><creator>Nor, Nurul Hidayah Mohamad</creator><creator>Awang, Rozidawati binti</creator><creator>Nakajima, Hideki</creator><creator>Tunmee, Sarayut</creator><creator>Tripathi, Manoj</creator><creator>Dalton, Alan</creator><creator>Goh, Boon Tong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210415</creationdate><title>Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition</title><author>Anuar, Nur Afira binti ; Nor, Nurul Hidayah Mohamad ; Awang, Rozidawati binti ; Nakajima, Hideki ; Tunmee, Sarayut ; Tripathi, Manoj ; Dalton, Alan ; Goh, Boon Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-aa73b8b67ced92aa1ae21f0ca4af667fc1cff8304e0d65dd5d67661bd9edca4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adatoms</topic><topic>Argon plasma</topic><topic>Atomic force microscopy</topic><topic>Bilayers</topic><topic>Chemical vapor deposition</topic><topic>Graphene</topic><topic>HWCVD</topic><topic>Low temperature</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanoplatelets</topic><topic>Nucleation</topic><topic>Raman mapping</topic><topic>Raman spectroscopy</topic><topic>Silicon substrates</topic><topic>Thin films</topic><topic>Tungsten</topic><topic>Tungsten nanoparticles</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anuar, Nur Afira binti</creatorcontrib><creatorcontrib>Nor, Nurul Hidayah Mohamad</creatorcontrib><creatorcontrib>Awang, Rozidawati binti</creatorcontrib><creatorcontrib>Nakajima, Hideki</creatorcontrib><creatorcontrib>Tunmee, Sarayut</creatorcontrib><creatorcontrib>Tripathi, Manoj</creatorcontrib><creatorcontrib>Dalton, Alan</creatorcontrib><creatorcontrib>Goh, Boon Tong</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anuar, Nur Afira binti</au><au>Nor, Nurul Hidayah Mohamad</au><au>Awang, Rozidawati binti</au><au>Nakajima, Hideki</au><au>Tunmee, Sarayut</au><au>Tripathi, Manoj</au><au>Dalton, Alan</au><au>Goh, Boon Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition</atitle><jtitle>Surface & coatings technology</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>411</volume><spage>126995</spage><pages>126995-</pages><artnum>126995</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>With the increasing demand for large-area graphene due to its versatility, there is an imminent requirement for scalable, low-temperature, and high yield growth procedures. In this study, the fabrication of large-area graphene nanoplatelets directly grown on tungsten (W) nanoparticles coated c-Si and quartz substrates by hot-wire chemical vapour deposition was demonstrated. A large area of single and bilayer graphene grown over W adatoms via controlled argon (Ar) plasma treatment varied from 0.5 to 10 min. The finest quality of continuous graphene layer up to an area of 2.56 × 104 μm2 was prepared at the optimised condition of 1 min, and verified through transmission electron microscopy in conjunction with energy dispersive X-ray, atomic force microscopy, and Raman spectroscopy. The prepared thin film of the carbon layer has excellent optical transparency (> 70%) and lower sheet resistance up to 718.3 Ω/sq. A detailed growth mechanism is proposed for the nucleation of graphene nanoplatelets under the influence of Ar plasma treatment on W nanoparticles.
[Display omitted]
•HWCVD grows graphene nanoplatelets at low temperature.•The numbers of layer of graphene nanoplatelets strongly depend on grains size of W nanoparticles.•The prepared thin film of the carbon layer has excellent optical transparency and lower sheet resistance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2021.126995</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2021-04, Vol.411, p.126995, Article 126995 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2551251819 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adatoms Argon plasma Atomic force microscopy Bilayers Chemical vapor deposition Graphene HWCVD Low temperature Microscopy Nanoparticles Nanoplatelets Nucleation Raman mapping Raman spectroscopy Silicon substrates Thin films Tungsten Tungsten nanoparticles Wire |
title | Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20growth%20of%20graphene%20nanoplatelets%20by%20hot-wire%20chemical%20vapour%20deposition&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Anuar,%20Nur%20Afira%20binti&rft.date=2021-04-15&rft.volume=411&rft.spage=126995&rft.pages=126995-&rft.artnum=126995&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2021.126995&rft_dat=%3Cproquest_cross%3E2551251819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551251819&rft_id=info:pmid/&rft_els_id=S0257897221001687&rfr_iscdi=true |