Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting

Selective laser melting (SLM) of aluminium alloys is of research interest due to its potential benefits in fabricating complex components for aerospace and automotive industries. In order to improve the mechanical properties and demonstrate the credibility of selective laser melted (SLMed) Al alloys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-03, Vol.809, p.140951, Article 140951
Hauptverfasser: Xiao, Y.K., Yang, Q., Bian, Z.Y., Chen, H., Wu, Y., Lian, Q., Chen, Z., Wang, H.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 140951
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 809
creator Xiao, Y.K.
Yang, Q.
Bian, Z.Y.
Chen, H.
Wu, Y.
Lian, Q.
Chen, Z.
Wang, H.W.
description Selective laser melting (SLM) of aluminium alloys is of research interest due to its potential benefits in fabricating complex components for aerospace and automotive industries. In order to improve the mechanical properties and demonstrate the credibility of selective laser melted (SLMed) Al alloys, the effects of post heat treatment on the microstructures and mechanical properties need to be studies. In the present work, the nano-TiB2 decorated Al–7Si–Cu–Mg samples were successfully fabricated using the SLM technique, and then post-treated by direct ageing and conventional T6 heat treatment. The as-built TiB2/Al–7Si–Cu–Mg sample exhibits fine equiaxed grain structures without preferred crystallographic texture due to the high cooling rate of SLM and the addition of nano-TiB2 particles. Nano-scale eutectic Si cells are present within the equiaxed grains. Inside the cells, there are dislocation tangles without precipitates. After direct ageing treatment, the grain and cell structures remain almost unchanged, and the new Al2Cu, Mg2Si, and Si phases are formed around the dislocations. While after T6 treatment, the fine grains grow up and the eutectic Si phases coarse leading to the broken of cell structures. Besides, the as-built TiB2/Al–7Si–Cu–Mg samples show high tensile strength and ductility (yield strength: 297.2 MPa, ultimate tensile strength: 474.6 MPa, elongation: 13.4%). During ageing, the yield strength is enhanced by ~35% due to precipitation hardening effect. While the broken of fine microstructure during T6 leads to the decrease of yield strength by ~16%. The microstructure development and preliminary strengthening mechanism were discussed. The effect of post-heat treatments can yield the SLMed TiB2/Al–7Si–Cu–Mg samples with appropriate mechanical properties, promoting a wide range of applications.
doi_str_mv 10.1016/j.msea.2021.140951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2551250995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321002203</els_id><sourcerecordid>2551250995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7e9f095305cb935164c3f505cbf3e2ea3bf939533e68741ff2b53198ef16f83f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssSWtH3UeEptS8ZJasaCsLccZt67SpNhOpa7gH_hDvgRHZc3mjkaeO-N7ELqmZEQJTceb0daDGjHC6IhOSCHoCRrQPOPJpODpKRqQgtFEkIKfowvvN4SQOCYG6HNhtWt9cJ0OnYNbvAYVcHBRt9AErJoKb0GvVWO1qvHOtTtwwYLHrcFLe8_G0_rn6zt7s1FnXZTFCqu6bg_YqNJFU4AKlwfsoQYd7B5wrTy4uLQOtlldojOjag9Xf3WI3h8flrPnZP769DKbzhPNWR6SDAoTU3EidFlwQdOJ5kb0neHAQPHSFDy-c0jzbEKNYaXgtMjB0NTk3PAhujnujQk-OvBBbtrONfGkZEJQFtFE-xCx41TPxDswcufsVrmDpET2oOVG9qBlD1oeQUfT3dEE8f97C056baHRUFkXI8uqtf_ZfwGeropU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551250995</pqid></control><display><type>article</type><title>Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Y.K. ; Yang, Q. ; Bian, Z.Y. ; Chen, H. ; Wu, Y. ; Lian, Q. ; Chen, Z. ; Wang, H.W.</creator><creatorcontrib>Xiao, Y.K. ; Yang, Q. ; Bian, Z.Y. ; Chen, H. ; Wu, Y. ; Lian, Q. ; Chen, Z. ; Wang, H.W.</creatorcontrib><description>Selective laser melting (SLM) of aluminium alloys is of research interest due to its potential benefits in fabricating complex components for aerospace and automotive industries. In order to improve the mechanical properties and demonstrate the credibility of selective laser melted (SLMed) Al alloys, the effects of post heat treatment on the microstructures and mechanical properties need to be studies. In the present work, the nano-TiB2 decorated Al–7Si–Cu–Mg samples were successfully fabricated using the SLM technique, and then post-treated by direct ageing and conventional T6 heat treatment. The as-built TiB2/Al–7Si–Cu–Mg sample exhibits fine equiaxed grain structures without preferred crystallographic texture due to the high cooling rate of SLM and the addition of nano-TiB2 particles. Nano-scale eutectic Si cells are present within the equiaxed grains. Inside the cells, there are dislocation tangles without precipitates. After direct ageing treatment, the grain and cell structures remain almost unchanged, and the new Al2Cu, Mg2Si, and Si phases are formed around the dislocations. While after T6 treatment, the fine grains grow up and the eutectic Si phases coarse leading to the broken of cell structures. Besides, the as-built TiB2/Al–7Si–Cu–Mg samples show high tensile strength and ductility (yield strength: 297.2 MPa, ultimate tensile strength: 474.6 MPa, elongation: 13.4%). During ageing, the yield strength is enhanced by ~35% due to precipitation hardening effect. While the broken of fine microstructure during T6 leads to the decrease of yield strength by ~16%. The microstructure development and preliminary strengthening mechanism were discussed. The effect of post-heat treatments can yield the SLMed TiB2/Al–7Si–Cu–Mg samples with appropriate mechanical properties, promoting a wide range of applications.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.140951</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aerospace industry ; Aging ; Aluminium alloys ; Aluminum base alloys ; Cooling rate ; Copper ; Copper base alloys ; Crystallography ; Elongation ; Grains ; Heat treating ; Heat treatment ; Laser beam melting ; Lasers ; Magnesium compounds ; Mechanical properties ; Metal silicides ; Microstructure ; Precipitates ; Precipitation hardening ; Rapid prototyping ; Selective laser melting ; Silicon ; Tensile strength ; Titanium diboride ; Ultimate tensile strength ; Weight reduction ; Yield strength ; Yield stress</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-03, Vol.809, p.140951, Article 140951</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7e9f095305cb935164c3f505cbf3e2ea3bf939533e68741ff2b53198ef16f83f3</citedby><cites>FETCH-LOGICAL-c328t-7e9f095305cb935164c3f505cbf3e2ea3bf939533e68741ff2b53198ef16f83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509321002203$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiao, Y.K.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Bian, Z.Y.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Lian, Q.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Wang, H.W.</creatorcontrib><title>Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Selective laser melting (SLM) of aluminium alloys is of research interest due to its potential benefits in fabricating complex components for aerospace and automotive industries. In order to improve the mechanical properties and demonstrate the credibility of selective laser melted (SLMed) Al alloys, the effects of post heat treatment on the microstructures and mechanical properties need to be studies. In the present work, the nano-TiB2 decorated Al–7Si–Cu–Mg samples were successfully fabricated using the SLM technique, and then post-treated by direct ageing and conventional T6 heat treatment. The as-built TiB2/Al–7Si–Cu–Mg sample exhibits fine equiaxed grain structures without preferred crystallographic texture due to the high cooling rate of SLM and the addition of nano-TiB2 particles. Nano-scale eutectic Si cells are present within the equiaxed grains. Inside the cells, there are dislocation tangles without precipitates. After direct ageing treatment, the grain and cell structures remain almost unchanged, and the new Al2Cu, Mg2Si, and Si phases are formed around the dislocations. While after T6 treatment, the fine grains grow up and the eutectic Si phases coarse leading to the broken of cell structures. Besides, the as-built TiB2/Al–7Si–Cu–Mg samples show high tensile strength and ductility (yield strength: 297.2 MPa, ultimate tensile strength: 474.6 MPa, elongation: 13.4%). During ageing, the yield strength is enhanced by ~35% due to precipitation hardening effect. While the broken of fine microstructure during T6 leads to the decrease of yield strength by ~16%. The microstructure development and preliminary strengthening mechanism were discussed. The effect of post-heat treatments can yield the SLMed TiB2/Al–7Si–Cu–Mg samples with appropriate mechanical properties, promoting a wide range of applications.</description><subject>Aerospace industry</subject><subject>Aging</subject><subject>Aluminium alloys</subject><subject>Aluminum base alloys</subject><subject>Cooling rate</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crystallography</subject><subject>Elongation</subject><subject>Grains</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Magnesium compounds</subject><subject>Mechanical properties</subject><subject>Metal silicides</subject><subject>Microstructure</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Rapid prototyping</subject><subject>Selective laser melting</subject><subject>Silicon</subject><subject>Tensile strength</subject><subject>Titanium diboride</subject><subject>Ultimate tensile strength</subject><subject>Weight reduction</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssSWtH3UeEptS8ZJasaCsLccZt67SpNhOpa7gH_hDvgRHZc3mjkaeO-N7ELqmZEQJTceb0daDGjHC6IhOSCHoCRrQPOPJpODpKRqQgtFEkIKfowvvN4SQOCYG6HNhtWt9cJ0OnYNbvAYVcHBRt9AErJoKb0GvVWO1qvHOtTtwwYLHrcFLe8_G0_rn6zt7s1FnXZTFCqu6bg_YqNJFU4AKlwfsoQYd7B5wrTy4uLQOtlldojOjag9Xf3WI3h8flrPnZP769DKbzhPNWR6SDAoTU3EidFlwQdOJ5kb0neHAQPHSFDy-c0jzbEKNYaXgtMjB0NTk3PAhujnujQk-OvBBbtrONfGkZEJQFtFE-xCx41TPxDswcufsVrmDpET2oOVG9qBlD1oeQUfT3dEE8f97C056baHRUFkXI8uqtf_ZfwGeropU</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Xiao, Y.K.</creator><creator>Yang, Q.</creator><creator>Bian, Z.Y.</creator><creator>Chen, H.</creator><creator>Wu, Y.</creator><creator>Lian, Q.</creator><creator>Chen, Z.</creator><creator>Wang, H.W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210330</creationdate><title>Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting</title><author>Xiao, Y.K. ; Yang, Q. ; Bian, Z.Y. ; Chen, H. ; Wu, Y. ; Lian, Q. ; Chen, Z. ; Wang, H.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7e9f095305cb935164c3f505cbf3e2ea3bf939533e68741ff2b53198ef16f83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace industry</topic><topic>Aging</topic><topic>Aluminium alloys</topic><topic>Aluminum base alloys</topic><topic>Cooling rate</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crystallography</topic><topic>Elongation</topic><topic>Grains</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Magnesium compounds</topic><topic>Mechanical properties</topic><topic>Metal silicides</topic><topic>Microstructure</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Rapid prototyping</topic><topic>Selective laser melting</topic><topic>Silicon</topic><topic>Tensile strength</topic><topic>Titanium diboride</topic><topic>Ultimate tensile strength</topic><topic>Weight reduction</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Y.K.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Bian, Z.Y.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Lian, Q.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Wang, H.W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Y.K.</au><au>Yang, Q.</au><au>Bian, Z.Y.</au><au>Chen, H.</au><au>Wu, Y.</au><au>Lian, Q.</au><au>Chen, Z.</au><au>Wang, H.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-03-30</date><risdate>2021</risdate><volume>809</volume><spage>140951</spage><pages>140951-</pages><artnum>140951</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Selective laser melting (SLM) of aluminium alloys is of research interest due to its potential benefits in fabricating complex components for aerospace and automotive industries. In order to improve the mechanical properties and demonstrate the credibility of selective laser melted (SLMed) Al alloys, the effects of post heat treatment on the microstructures and mechanical properties need to be studies. In the present work, the nano-TiB2 decorated Al–7Si–Cu–Mg samples were successfully fabricated using the SLM technique, and then post-treated by direct ageing and conventional T6 heat treatment. The as-built TiB2/Al–7Si–Cu–Mg sample exhibits fine equiaxed grain structures without preferred crystallographic texture due to the high cooling rate of SLM and the addition of nano-TiB2 particles. Nano-scale eutectic Si cells are present within the equiaxed grains. Inside the cells, there are dislocation tangles without precipitates. After direct ageing treatment, the grain and cell structures remain almost unchanged, and the new Al2Cu, Mg2Si, and Si phases are formed around the dislocations. While after T6 treatment, the fine grains grow up and the eutectic Si phases coarse leading to the broken of cell structures. Besides, the as-built TiB2/Al–7Si–Cu–Mg samples show high tensile strength and ductility (yield strength: 297.2 MPa, ultimate tensile strength: 474.6 MPa, elongation: 13.4%). During ageing, the yield strength is enhanced by ~35% due to precipitation hardening effect. While the broken of fine microstructure during T6 leads to the decrease of yield strength by ~16%. The microstructure development and preliminary strengthening mechanism were discussed. The effect of post-heat treatments can yield the SLMed TiB2/Al–7Si–Cu–Mg samples with appropriate mechanical properties, promoting a wide range of applications.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.140951</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-03, Vol.809, p.140951, Article 140951
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2551250995
source Elsevier ScienceDirect Journals
subjects Aerospace industry
Aging
Aluminium alloys
Aluminum base alloys
Cooling rate
Copper
Copper base alloys
Crystallography
Elongation
Grains
Heat treating
Heat treatment
Laser beam melting
Lasers
Magnesium compounds
Mechanical properties
Metal silicides
Microstructure
Precipitates
Precipitation hardening
Rapid prototyping
Selective laser melting
Silicon
Tensile strength
Titanium diboride
Ultimate tensile strength
Weight reduction
Yield strength
Yield stress
title Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20heat%20treatment%20and%20mechanical%20properties%20of%20TiB2/Al%E2%80%937Si%E2%80%93Cu%E2%80%93Mg%20alloy%20fabricated%20by%20selective%20laser%20melting&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xiao,%20Y.K.&rft.date=2021-03-30&rft.volume=809&rft.spage=140951&rft.pages=140951-&rft.artnum=140951&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.140951&rft_dat=%3Cproquest_cross%3E2551250995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551250995&rft_id=info:pmid/&rft_els_id=S0921509321002203&rfr_iscdi=true