A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics
As an essential component in efficient perovskite photovoltaics (PPVs), hole transport materials (HTMs) that meet the intricate requirements for next-generation charge transport layers have recently been of immense interest. Specifically, functionally tailored HTMs that aid in mitigating charge tran...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-07, Vol.9 (27), p.15294-153 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 27 |
container_start_page | 15294 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Opoku, Henry Kim, Yun Hoo Lee, Ji Hyeon Ahn, Hyungju Lee, Jae-Joon Baek, Se-Woong Jo, Jea Woong |
description | As an essential component in efficient perovskite photovoltaics (PPVs), hole transport materials (HTMs) that meet the intricate requirements for next-generation charge transport layers have recently been of immense interest. Specifically, functionally tailored HTMs that aid in mitigating charge transport limitations and interfacial defects and thereby enhance the performance of both indoor and outdoor PPVs are being sought after. Herein, we developed a novel graft-type polymer composed of a benzo[1,2-
b
:4,5:
b
′]dithiophene-based main chain and poly(ethylene glycol) (PEG) side chains as an efficient dopant-free HTM for PPVs. Through a systemized tailoring of the contents of the side chains, we were able to control the hole transport and interfacial passivation abilities of the graft-type polymeric HTM. The polymeric HTM with an optimized PEG side chain exhibited a higher hole mobility, a reduced amount of interfacial traps, and an enhanced device stability compared to the control polymeric HTM. The PPVs capped with the optimized graft-type polymeric HTM demonstrated remarkably high power conversion efficiencies up to 38.2% and 21.7% under 1000 lux LED and AM 1.5 solar illuminations, respectively.
A new graft-type polymer which exhibits dual functionality of efficient charge transport and interfacial passivation was synthesized as a dopant-free hole transport material for indoor perovskite photovoltaics. |
doi_str_mv | 10.1039/d1ta03577k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2551223818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551223818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-c64b1e53bd677a3eb36c6c281f7bf2e83ac8ba696201cf34051fedf416381cae3</originalsourceid><addsrcrecordid>eNpFkMFLwzAUh4MoOOYu3oWAN6GaNG2aHsd0Kg68zHNJ0xfXrWvqSzbYf290Mh8P3jt8_H7wEXLN2T1nonxoeNBM5EWxOSOjlOUsKbJSnp9-pS7JxPs1i6MYk2U5Iu2UBt12DqGhn6htSMJhADq47rAFpNpTTRs36D4kFgHoynVAA-reDw4D3eoA2OqOtn3cxjmkA6Db-00bYsrKBbd3XWww_opcWN15mPzdMfmYPy1nL8ni_fl1Nl0kRvAiJEZmNYdc1I0sCi2gFtJIkypui9qmoIQ2qtaylCnjxoqM5dxCYzMuheJGgxiT22PugO5rBz5Ua7fDPlZWaZ7zNI2citTdkTLovEew1YDtVuOh4qz6sVk98uX01-ZbhG-OMHpz4v5ti28zB3MX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551223818</pqid></control><display><type>article</type><title>A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Opoku, Henry ; Kim, Yun Hoo ; Lee, Ji Hyeon ; Ahn, Hyungju ; Lee, Jae-Joon ; Baek, Se-Woong ; Jo, Jea Woong</creator><creatorcontrib>Opoku, Henry ; Kim, Yun Hoo ; Lee, Ji Hyeon ; Ahn, Hyungju ; Lee, Jae-Joon ; Baek, Se-Woong ; Jo, Jea Woong</creatorcontrib><description>As an essential component in efficient perovskite photovoltaics (PPVs), hole transport materials (HTMs) that meet the intricate requirements for next-generation charge transport layers have recently been of immense interest. Specifically, functionally tailored HTMs that aid in mitigating charge transport limitations and interfacial defects and thereby enhance the performance of both indoor and outdoor PPVs are being sought after. Herein, we developed a novel graft-type polymer composed of a benzo[1,2-
b
:4,5:
b
′]dithiophene-based main chain and poly(ethylene glycol) (PEG) side chains as an efficient dopant-free HTM for PPVs. Through a systemized tailoring of the contents of the side chains, we were able to control the hole transport and interfacial passivation abilities of the graft-type polymeric HTM. The polymeric HTM with an optimized PEG side chain exhibited a higher hole mobility, a reduced amount of interfacial traps, and an enhanced device stability compared to the control polymeric HTM. The PPVs capped with the optimized graft-type polymeric HTM demonstrated remarkably high power conversion efficiencies up to 38.2% and 21.7% under 1000 lux LED and AM 1.5 solar illuminations, respectively.
A new graft-type polymer which exhibits dual functionality of efficient charge transport and interfacial passivation was synthesized as a dopant-free hole transport material for indoor perovskite photovoltaics.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta03577k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transport ; Control stability ; Dopants ; Energy conversion efficiency ; Grafting ; Hole mobility ; Interface stability ; Perovskites ; Photovoltaic cells ; Photovoltaics ; Polyethylene glycol ; Polymers</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-07, Vol.9 (27), p.15294-153</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-c64b1e53bd677a3eb36c6c281f7bf2e83ac8ba696201cf34051fedf416381cae3</citedby><cites>FETCH-LOGICAL-c317t-c64b1e53bd677a3eb36c6c281f7bf2e83ac8ba696201cf34051fedf416381cae3</cites><orcidid>0000-0001-8966-0336 ; 0000-0002-4112-526X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Opoku, Henry</creatorcontrib><creatorcontrib>Kim, Yun Hoo</creatorcontrib><creatorcontrib>Lee, Ji Hyeon</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Lee, Jae-Joon</creatorcontrib><creatorcontrib>Baek, Se-Woong</creatorcontrib><creatorcontrib>Jo, Jea Woong</creatorcontrib><title>A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>As an essential component in efficient perovskite photovoltaics (PPVs), hole transport materials (HTMs) that meet the intricate requirements for next-generation charge transport layers have recently been of immense interest. Specifically, functionally tailored HTMs that aid in mitigating charge transport limitations and interfacial defects and thereby enhance the performance of both indoor and outdoor PPVs are being sought after. Herein, we developed a novel graft-type polymer composed of a benzo[1,2-
b
:4,5:
b
′]dithiophene-based main chain and poly(ethylene glycol) (PEG) side chains as an efficient dopant-free HTM for PPVs. Through a systemized tailoring of the contents of the side chains, we were able to control the hole transport and interfacial passivation abilities of the graft-type polymeric HTM. The polymeric HTM with an optimized PEG side chain exhibited a higher hole mobility, a reduced amount of interfacial traps, and an enhanced device stability compared to the control polymeric HTM. The PPVs capped with the optimized graft-type polymeric HTM demonstrated remarkably high power conversion efficiencies up to 38.2% and 21.7% under 1000 lux LED and AM 1.5 solar illuminations, respectively.
A new graft-type polymer which exhibits dual functionality of efficient charge transport and interfacial passivation was synthesized as a dopant-free hole transport material for indoor perovskite photovoltaics.</description><subject>Charge transport</subject><subject>Control stability</subject><subject>Dopants</subject><subject>Energy conversion efficiency</subject><subject>Grafting</subject><subject>Hole mobility</subject><subject>Interface stability</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAUh4MoOOYu3oWAN6GaNG2aHsd0Kg68zHNJ0xfXrWvqSzbYf290Mh8P3jt8_H7wEXLN2T1nonxoeNBM5EWxOSOjlOUsKbJSnp9-pS7JxPs1i6MYk2U5Iu2UBt12DqGhn6htSMJhADq47rAFpNpTTRs36D4kFgHoynVAA-reDw4D3eoA2OqOtn3cxjmkA6Db-00bYsrKBbd3XWww_opcWN15mPzdMfmYPy1nL8ni_fl1Nl0kRvAiJEZmNYdc1I0sCi2gFtJIkypui9qmoIQ2qtaylCnjxoqM5dxCYzMuheJGgxiT22PugO5rBz5Ua7fDPlZWaZ7zNI2citTdkTLovEew1YDtVuOh4qz6sVk98uX01-ZbhG-OMHpz4v5ti28zB3MX</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Opoku, Henry</creator><creator>Kim, Yun Hoo</creator><creator>Lee, Ji Hyeon</creator><creator>Ahn, Hyungju</creator><creator>Lee, Jae-Joon</creator><creator>Baek, Se-Woong</creator><creator>Jo, Jea Woong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid><orcidid>https://orcid.org/0000-0002-4112-526X</orcidid></search><sort><creationdate>20210721</creationdate><title>A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics</title><author>Opoku, Henry ; Kim, Yun Hoo ; Lee, Ji Hyeon ; Ahn, Hyungju ; Lee, Jae-Joon ; Baek, Se-Woong ; Jo, Jea Woong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-c64b1e53bd677a3eb36c6c281f7bf2e83ac8ba696201cf34051fedf416381cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transport</topic><topic>Control stability</topic><topic>Dopants</topic><topic>Energy conversion efficiency</topic><topic>Grafting</topic><topic>Hole mobility</topic><topic>Interface stability</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opoku, Henry</creatorcontrib><creatorcontrib>Kim, Yun Hoo</creatorcontrib><creatorcontrib>Lee, Ji Hyeon</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Lee, Jae-Joon</creatorcontrib><creatorcontrib>Baek, Se-Woong</creatorcontrib><creatorcontrib>Jo, Jea Woong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opoku, Henry</au><au>Kim, Yun Hoo</au><au>Lee, Ji Hyeon</au><au>Ahn, Hyungju</au><au>Lee, Jae-Joon</au><au>Baek, Se-Woong</au><au>Jo, Jea Woong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-07-21</date><risdate>2021</risdate><volume>9</volume><issue>27</issue><spage>15294</spage><epage>153</epage><pages>15294-153</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>As an essential component in efficient perovskite photovoltaics (PPVs), hole transport materials (HTMs) that meet the intricate requirements for next-generation charge transport layers have recently been of immense interest. Specifically, functionally tailored HTMs that aid in mitigating charge transport limitations and interfacial defects and thereby enhance the performance of both indoor and outdoor PPVs are being sought after. Herein, we developed a novel graft-type polymer composed of a benzo[1,2-
b
:4,5:
b
′]dithiophene-based main chain and poly(ethylene glycol) (PEG) side chains as an efficient dopant-free HTM for PPVs. Through a systemized tailoring of the contents of the side chains, we were able to control the hole transport and interfacial passivation abilities of the graft-type polymeric HTM. The polymeric HTM with an optimized PEG side chain exhibited a higher hole mobility, a reduced amount of interfacial traps, and an enhanced device stability compared to the control polymeric HTM. The PPVs capped with the optimized graft-type polymeric HTM demonstrated remarkably high power conversion efficiencies up to 38.2% and 21.7% under 1000 lux LED and AM 1.5 solar illuminations, respectively.
A new graft-type polymer which exhibits dual functionality of efficient charge transport and interfacial passivation was synthesized as a dopant-free hole transport material for indoor perovskite photovoltaics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta03577k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid><orcidid>https://orcid.org/0000-0002-4112-526X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-07, Vol.9 (27), p.15294-153 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2551223818 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Charge transport Control stability Dopants Energy conversion efficiency Grafting Hole mobility Interface stability Perovskites Photovoltaic cells Photovoltaics Polyethylene glycol Polymers |
title | A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tailored%20graft-type%20polymer%20as%20a%20dopant-free%20hole%20transport%20material%20in%20indoor%20perovskite%20photovoltaics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Opoku,%20Henry&rft.date=2021-07-21&rft.volume=9&rft.issue=27&rft.spage=15294&rft.epage=153&rft.pages=15294-153&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta03577k&rft_dat=%3Cproquest_rsc_p%3E2551223818%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551223818&rft_id=info:pmid/&rfr_iscdi=true |