Cumulative Assessment for Urban 3D Modeling

Urban 3D modeling from satellite images requires accurate semantic segmentation to delineate urban features, multiple view stereo for 3D reconstruction of surface heights, and 3D model fitting to produce compact models with accurate surface slopes. In this work, we present a cumulative assessment me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Hagstrom, Shea, Pak, Hee Won, Ku, Stephanie, Wang, Sean, Hager, Gregory, Brown, Myron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hagstrom, Shea
Pak, Hee Won
Ku, Stephanie
Wang, Sean
Hager, Gregory
Brown, Myron
description Urban 3D modeling from satellite images requires accurate semantic segmentation to delineate urban features, multiple view stereo for 3D reconstruction of surface heights, and 3D model fitting to produce compact models with accurate surface slopes. In this work, we present a cumulative assessment metric that succinctly captures error contributions from each of these components. We demonstrate our approach by providing challenging public datasets and extending two open source projects to provide an end-to-end 3D modeling baseline solution to stimulate further research and evaluation with a public leaderboard.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2550959010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550959010</sourcerecordid><originalsourceid>FETCH-proquest_journals_25509590103</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdi7NLc1JLMksS1VwLC5OLS7OTc0rUUjLL1IILUpKzFMwdlHwzU9JzcnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXig4QaWppYGhgbGxKkCACXFMMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550959010</pqid></control><display><type>article</type><title>Cumulative Assessment for Urban 3D Modeling</title><source>Free E- Journals</source><creator>Hagstrom, Shea ; Pak, Hee Won ; Ku, Stephanie ; Wang, Sean ; Hager, Gregory ; Brown, Myron</creator><creatorcontrib>Hagstrom, Shea ; Pak, Hee Won ; Ku, Stephanie ; Wang, Sean ; Hager, Gregory ; Brown, Myron</creatorcontrib><description>Urban 3D modeling from satellite images requires accurate semantic segmentation to delineate urban features, multiple view stereo for 3D reconstruction of surface heights, and 3D model fitting to produce compact models with accurate surface slopes. In this work, we present a cumulative assessment metric that succinctly captures error contributions from each of these components. We demonstrate our approach by providing challenging public datasets and extending two open source projects to provide an end-to-end 3D modeling baseline solution to stimulate further research and evaluation with a public leaderboard.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image reconstruction ; Image segmentation ; Modelling ; Satellite imagery ; Three dimensional models</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hagstrom, Shea</creatorcontrib><creatorcontrib>Pak, Hee Won</creatorcontrib><creatorcontrib>Ku, Stephanie</creatorcontrib><creatorcontrib>Wang, Sean</creatorcontrib><creatorcontrib>Hager, Gregory</creatorcontrib><creatorcontrib>Brown, Myron</creatorcontrib><title>Cumulative Assessment for Urban 3D Modeling</title><title>arXiv.org</title><description>Urban 3D modeling from satellite images requires accurate semantic segmentation to delineate urban features, multiple view stereo for 3D reconstruction of surface heights, and 3D model fitting to produce compact models with accurate surface slopes. In this work, we present a cumulative assessment metric that succinctly captures error contributions from each of these components. We demonstrate our approach by providing challenging public datasets and extending two open source projects to provide an end-to-end 3D modeling baseline solution to stimulate further research and evaluation with a public leaderboard.</description><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Modelling</subject><subject>Satellite imagery</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdi7NLc1JLMksS1VwLC5OLS7OTc0rUUjLL1IILUpKzFMwdlHwzU9JzcnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXig4QaWppYGhgbGxKkCACXFMMI</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>Hagstrom, Shea</creator><creator>Pak, Hee Won</creator><creator>Ku, Stephanie</creator><creator>Wang, Sean</creator><creator>Hager, Gregory</creator><creator>Brown, Myron</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210709</creationdate><title>Cumulative Assessment for Urban 3D Modeling</title><author>Hagstrom, Shea ; Pak, Hee Won ; Ku, Stephanie ; Wang, Sean ; Hager, Gregory ; Brown, Myron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25509590103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Modelling</topic><topic>Satellite imagery</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Hagstrom, Shea</creatorcontrib><creatorcontrib>Pak, Hee Won</creatorcontrib><creatorcontrib>Ku, Stephanie</creatorcontrib><creatorcontrib>Wang, Sean</creatorcontrib><creatorcontrib>Hager, Gregory</creatorcontrib><creatorcontrib>Brown, Myron</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagstrom, Shea</au><au>Pak, Hee Won</au><au>Ku, Stephanie</au><au>Wang, Sean</au><au>Hager, Gregory</au><au>Brown, Myron</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cumulative Assessment for Urban 3D Modeling</atitle><jtitle>arXiv.org</jtitle><date>2021-07-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Urban 3D modeling from satellite images requires accurate semantic segmentation to delineate urban features, multiple view stereo for 3D reconstruction of surface heights, and 3D model fitting to produce compact models with accurate surface slopes. In this work, we present a cumulative assessment metric that succinctly captures error contributions from each of these components. We demonstrate our approach by providing challenging public datasets and extending two open source projects to provide an end-to-end 3D modeling baseline solution to stimulate further research and evaluation with a public leaderboard.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2550959010
source Free E- Journals
subjects Image reconstruction
Image segmentation
Modelling
Satellite imagery
Three dimensional models
title Cumulative Assessment for Urban 3D Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cumulative%20Assessment%20for%20Urban%203D%20Modeling&rft.jtitle=arXiv.org&rft.au=Hagstrom,%20Shea&rft.date=2021-07-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2550959010%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550959010&rft_id=info:pmid/&rfr_iscdi=true