Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data

Adaptive Type-II progressive hybrid censoring scheme has been proposed to increase the efficiency of statistical analysis and save the total test time on a life-testing experiment. This article deals with the problem of estimating the parameters, survival and hazard rate functions of the two-paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2021-09, Vol.36 (3), p.1965-1990
Hauptverfasser: Elshahhat, Ahmed, Nassar, Mazen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1990
container_issue 3
container_start_page 1965
container_title Computational statistics
container_volume 36
creator Elshahhat, Ahmed
Nassar, Mazen
description Adaptive Type-II progressive hybrid censoring scheme has been proposed to increase the efficiency of statistical analysis and save the total test time on a life-testing experiment. This article deals with the problem of estimating the parameters, survival and hazard rate functions of the two-parameter Hjorth distribution under adaptive Type-II progressive hybrid censoring scheme using maximum likelihood and Bayesian approaches. The two-sided approximate confidence intervals of the unknown quantities are constructed. Under the assumption of independent gamma priors, the Bayes estimators are obtained using squared error loss function. Since the Bayes estimators cannot be expressed in closed forms, Lindley’s approximation and Markov chain Monte Carlo methods are considered and the highest posterior density credible intervals are also obtained. To study the behavior of the various estimators, a Monte Carlo simulation study is performed. The performances of the different estimators have been compared on the basis of their average root mean squared error and relative absolute bias. Finally, to show the applicability of the proposed estimators a data set of industrial devices has been analyzed.
doi_str_mv 10.1007/s00180-021-01065-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550949200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550949200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a23485970f0cdcc8f05d4dca117bc82598f3dc5ba3bbb8f73d0a243f4e17d9713</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Ql2exmj1rUFgpeKh5DNn_aLbW75m0L--3duoI3Tw-GmeHNj5BbDvccoHhAAK6BgeAMOOSK6TMy4TmXrMyVPicTKDPJMsjFJblC3AIIUQg-IR9Ptg9Y2z3FQzrWR7ujdm93PdZIY5Oo9bbt6mOgq74NbLGgbWrWKSCetE1fpdpTF_bYpODpfNukbkO97ew1uYh2h-Hm907J-8vzajZny7fXxexxyZzkZceskJlWZQERnHdOR1A-885yXlROC1XqKL1TlZVVVelYSA9WZDJmgRe-LLickruxd_jr6xCwM9vmkIYFaIRSw-pSAAwuMbpcahBTiKZN9adNveFgTgDNCNAMAM0PQKOHkBxDOJj365D-qv9JfQNsn3Qq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550949200</pqid></control><display><type>article</type><title>Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data</title><source>SpringerLink Journals</source><creator>Elshahhat, Ahmed ; Nassar, Mazen</creator><creatorcontrib>Elshahhat, Ahmed ; Nassar, Mazen</creatorcontrib><description>Adaptive Type-II progressive hybrid censoring scheme has been proposed to increase the efficiency of statistical analysis and save the total test time on a life-testing experiment. This article deals with the problem of estimating the parameters, survival and hazard rate functions of the two-parameter Hjorth distribution under adaptive Type-II progressive hybrid censoring scheme using maximum likelihood and Bayesian approaches. The two-sided approximate confidence intervals of the unknown quantities are constructed. Under the assumption of independent gamma priors, the Bayes estimators are obtained using squared error loss function. Since the Bayes estimators cannot be expressed in closed forms, Lindley’s approximation and Markov chain Monte Carlo methods are considered and the highest posterior density credible intervals are also obtained. To study the behavior of the various estimators, a Monte Carlo simulation study is performed. The performances of the different estimators have been compared on the basis of their average root mean squared error and relative absolute bias. Finally, to show the applicability of the proposed estimators a data set of industrial devices has been analyzed.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-021-01065-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Confidence intervals ; Economic Theory/Quantitative Economics/Mathematical Methods ; Electronic devices ; Estimators ; Markov chains ; Mathematics and Statistics ; Monte Carlo simulation ; Original Paper ; Parameter estimation ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Statistical analysis ; Statistics ; Survival ; Survival analysis</subject><ispartof>Computational statistics, 2021-09, Vol.36 (3), p.1965-1990</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a23485970f0cdcc8f05d4dca117bc82598f3dc5ba3bbb8f73d0a243f4e17d9713</citedby><cites>FETCH-LOGICAL-c319t-a23485970f0cdcc8f05d4dca117bc82598f3dc5ba3bbb8f73d0a243f4e17d9713</cites><orcidid>0000-0002-9916-259X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-021-01065-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-021-01065-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Elshahhat, Ahmed</creatorcontrib><creatorcontrib>Nassar, Mazen</creatorcontrib><title>Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>Adaptive Type-II progressive hybrid censoring scheme has been proposed to increase the efficiency of statistical analysis and save the total test time on a life-testing experiment. This article deals with the problem of estimating the parameters, survival and hazard rate functions of the two-parameter Hjorth distribution under adaptive Type-II progressive hybrid censoring scheme using maximum likelihood and Bayesian approaches. The two-sided approximate confidence intervals of the unknown quantities are constructed. Under the assumption of independent gamma priors, the Bayes estimators are obtained using squared error loss function. Since the Bayes estimators cannot be expressed in closed forms, Lindley’s approximation and Markov chain Monte Carlo methods are considered and the highest posterior density credible intervals are also obtained. To study the behavior of the various estimators, a Monte Carlo simulation study is performed. The performances of the different estimators have been compared on the basis of their average root mean squared error and relative absolute bias. Finally, to show the applicability of the proposed estimators a data set of industrial devices has been analyzed.</description><subject>Bayesian analysis</subject><subject>Confidence intervals</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Electronic devices</subject><subject>Estimators</subject><subject>Markov chains</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Ql2exmj1rUFgpeKh5DNn_aLbW75m0L--3duoI3Tw-GmeHNj5BbDvccoHhAAK6BgeAMOOSK6TMy4TmXrMyVPicTKDPJMsjFJblC3AIIUQg-IR9Ptg9Y2z3FQzrWR7ujdm93PdZIY5Oo9bbt6mOgq74NbLGgbWrWKSCetE1fpdpTF_bYpODpfNukbkO97ew1uYh2h-Hm907J-8vzajZny7fXxexxyZzkZceskJlWZQERnHdOR1A-885yXlROC1XqKL1TlZVVVelYSA9WZDJmgRe-LLickruxd_jr6xCwM9vmkIYFaIRSw-pSAAwuMbpcahBTiKZN9adNveFgTgDNCNAMAM0PQKOHkBxDOJj365D-qv9JfQNsn3Qq</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Elshahhat, Ahmed</creator><creator>Nassar, Mazen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9916-259X</orcidid></search><sort><creationdate>20210901</creationdate><title>Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data</title><author>Elshahhat, Ahmed ; Nassar, Mazen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a23485970f0cdcc8f05d4dca117bc82598f3dc5ba3bbb8f73d0a243f4e17d9713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Confidence intervals</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Electronic devices</topic><topic>Estimators</topic><topic>Markov chains</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elshahhat, Ahmed</creatorcontrib><creatorcontrib>Nassar, Mazen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elshahhat, Ahmed</au><au>Nassar, Mazen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>1965</spage><epage>1990</epage><pages>1965-1990</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>Adaptive Type-II progressive hybrid censoring scheme has been proposed to increase the efficiency of statistical analysis and save the total test time on a life-testing experiment. This article deals with the problem of estimating the parameters, survival and hazard rate functions of the two-parameter Hjorth distribution under adaptive Type-II progressive hybrid censoring scheme using maximum likelihood and Bayesian approaches. The two-sided approximate confidence intervals of the unknown quantities are constructed. Under the assumption of independent gamma priors, the Bayes estimators are obtained using squared error loss function. Since the Bayes estimators cannot be expressed in closed forms, Lindley’s approximation and Markov chain Monte Carlo methods are considered and the highest posterior density credible intervals are also obtained. To study the behavior of the various estimators, a Monte Carlo simulation study is performed. The performances of the different estimators have been compared on the basis of their average root mean squared error and relative absolute bias. Finally, to show the applicability of the proposed estimators a data set of industrial devices has been analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-021-01065-8</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-9916-259X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2021-09, Vol.36 (3), p.1965-1990
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_journals_2550949200
source SpringerLink Journals
subjects Bayesian analysis
Confidence intervals
Economic Theory/Quantitative Economics/Mathematical Methods
Electronic devices
Estimators
Markov chains
Mathematics and Statistics
Monte Carlo simulation
Original Paper
Parameter estimation
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistical analysis
Statistics
Survival
Survival analysis
title Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20survival%20analysis%20for%20adaptive%20Type-II%20progressive%20hybrid%20censored%20Hjorth%20data&rft.jtitle=Computational%20statistics&rft.au=Elshahhat,%20Ahmed&rft.date=2021-09-01&rft.volume=36&rft.issue=3&rft.spage=1965&rft.epage=1990&rft.pages=1965-1990&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-021-01065-8&rft_dat=%3Cproquest_cross%3E2550949200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550949200&rft_id=info:pmid/&rfr_iscdi=true