Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions

[Display omitted] •The new aerogel-based render presents a low thermal conductivity (0.029 W/m.°C).•The thermal conductivity of the aerogel-based render increases with moisture content.•The coating contributes to reducing the hygrothermal risk due to its low capillary absorption.•Hygrothermal risks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2021-07, Vol.243, p.111001, Article 111001
Hauptverfasser: Maia, J., Pedroso, M., Ramos, N.M.M., Pereira, P.F., Flores-Colen, I., Gomes, M. Glória, Silva, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111001
container_title Energy and buildings
container_volume 243
creator Maia, J.
Pedroso, M.
Ramos, N.M.M.
Pereira, P.F.
Flores-Colen, I.
Gomes, M. Glória
Silva, L.
description [Display omitted] •The new aerogel-based render presents a low thermal conductivity (0.029 W/m.°C).•The thermal conductivity of the aerogel-based render increases with moisture content.•The coating contributes to reducing the hygrothermal risk due to its low capillary absorption.•Hygrothermal risks of aerogel based-renders increase in colder climates. Silica-aerogel is one of the nanomaterials that contributes to increasing the thermal properties, due to its high porosity and low density, and also low thermal conductivity. The development of innovative thermal renderings is a current trend, but their impact on the hygrothermal performance of façade systems requires additional investigation. The main goal of the present work consists of discussing the hygrothermal performance of a new thermal aerogel-based render when applied as a component of a multilayer coating system. To achieve this objective, relevant hygrothermal properties were determined. An accurate analysis of the hygrothermal impact, considering different European climates, was also performed. A clear improvement of the thermal conductivity of the new render, at dry-state, (0.029 W/m.°C) was found. As the observed high open porosity (≈83%) leads to a high capillary absorption coefficient (0.129 kg/m2.s1/2), the prevention of moisture-related risks is a critical issue. Due to the high increase of the thermal conductivity (up to 400%), when saturated, the application of finishing materials is therefore decisive for the successful use of these renders in building envelopes. The numerical simulations highlighted significant hygrothermal risks at higher latitudes, observed by relevant temperature differences across the render thickness and significant external condensation potential.
doi_str_mv 10.1016/j.enbuild.2021.111001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550689993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778821002851</els_id><sourcerecordid>2550689993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d735e45955eca33e34fe1d1b541a5ce43603283c8ce27596461b65796816959f3</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhiMEEmPwCEiROHfETZOmJ4QmYEiTuMA5yhJ3pOqakbQg3p6OjjMX25L9_7Y_Qq6BLYCBvG0W2G0G37pFznJYAABjcEJmoMo8k1CqUzJjvFRZWSp1Ti5SahhjUpQwI2b1vY2hf8e4My3dY6zDWHUWaaipoR1-0b-mwRi22GYbk9DRiJ3DSIff6HzqfWd7alu_M7231IbO-d6HLl2Ss9q0Ca-OeU7eHh9el6ts_fL0vLxfZ5bLos9cyQUWohICreEceVEjONiIAoywWHDJeK64VRbzUlSykLAZX6ikAlmJquZzcjP57mP4GDD1uglD7MaVOheCSVVVFR-nxDRlY0gpYq33cTw5fmtg-kBTN_pIUx9o6onmqLubdDi-8Okx6mQ9jpycj2h77YL_x-EHgTyAcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550689993</pqid></control><display><type>article</type><title>Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Maia, J. ; Pedroso, M. ; Ramos, N.M.M. ; Pereira, P.F. ; Flores-Colen, I. ; Gomes, M. Glória ; Silva, L.</creator><creatorcontrib>Maia, J. ; Pedroso, M. ; Ramos, N.M.M. ; Pereira, P.F. ; Flores-Colen, I. ; Gomes, M. Glória ; Silva, L.</creatorcontrib><description>[Display omitted] •The new aerogel-based render presents a low thermal conductivity (0.029 W/m.°C).•The thermal conductivity of the aerogel-based render increases with moisture content.•The coating contributes to reducing the hygrothermal risk due to its low capillary absorption.•Hygrothermal risks of aerogel based-renders increase in colder climates. Silica-aerogel is one of the nanomaterials that contributes to increasing the thermal properties, due to its high porosity and low density, and also low thermal conductivity. The development of innovative thermal renderings is a current trend, but their impact on the hygrothermal performance of façade systems requires additional investigation. The main goal of the present work consists of discussing the hygrothermal performance of a new thermal aerogel-based render when applied as a component of a multilayer coating system. To achieve this objective, relevant hygrothermal properties were determined. An accurate analysis of the hygrothermal impact, considering different European climates, was also performed. A clear improvement of the thermal conductivity of the new render, at dry-state, (0.029 W/m.°C) was found. As the observed high open porosity (≈83%) leads to a high capillary absorption coefficient (0.129 kg/m2.s1/2), the prevention of moisture-related risks is a critical issue. Due to the high increase of the thermal conductivity (up to 400%), when saturated, the application of finishing materials is therefore decisive for the successful use of these renders in building envelopes. The numerical simulations highlighted significant hygrothermal risks at higher latitudes, observed by relevant temperature differences across the render thickness and significant external condensation potential.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2021.111001</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Absorptivity ; Aerogel ; Aerogels ; Building envelopes ; Building Façade ; Climate ; Climatic conditions ; Heat conductivity ; Heat transfer ; Hygrothermal properties ; Multilayers ; Nanomaterials ; Nanotechnology ; Numerical simulation ; Porosity ; Silica ; Silicon dioxide ; Temperature gradients ; Thermal conductivity ; Thermal properties ; Thermal render ; Thermodynamic properties</subject><ispartof>Energy and buildings, 2021-07, Vol.243, p.111001, Article 111001</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d735e45955eca33e34fe1d1b541a5ce43603283c8ce27596461b65796816959f3</citedby><cites>FETCH-LOGICAL-c364t-d735e45955eca33e34fe1d1b541a5ce43603283c8ce27596461b65796816959f3</cites><orcidid>0000-0003-4038-6748 ; 0000-0001-5036-8581 ; 0000-0002-8119-6847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2021.111001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Maia, J.</creatorcontrib><creatorcontrib>Pedroso, M.</creatorcontrib><creatorcontrib>Ramos, N.M.M.</creatorcontrib><creatorcontrib>Pereira, P.F.</creatorcontrib><creatorcontrib>Flores-Colen, I.</creatorcontrib><creatorcontrib>Gomes, M. Glória</creatorcontrib><creatorcontrib>Silva, L.</creatorcontrib><title>Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions</title><title>Energy and buildings</title><description>[Display omitted] •The new aerogel-based render presents a low thermal conductivity (0.029 W/m.°C).•The thermal conductivity of the aerogel-based render increases with moisture content.•The coating contributes to reducing the hygrothermal risk due to its low capillary absorption.•Hygrothermal risks of aerogel based-renders increase in colder climates. Silica-aerogel is one of the nanomaterials that contributes to increasing the thermal properties, due to its high porosity and low density, and also low thermal conductivity. The development of innovative thermal renderings is a current trend, but their impact on the hygrothermal performance of façade systems requires additional investigation. The main goal of the present work consists of discussing the hygrothermal performance of a new thermal aerogel-based render when applied as a component of a multilayer coating system. To achieve this objective, relevant hygrothermal properties were determined. An accurate analysis of the hygrothermal impact, considering different European climates, was also performed. A clear improvement of the thermal conductivity of the new render, at dry-state, (0.029 W/m.°C) was found. As the observed high open porosity (≈83%) leads to a high capillary absorption coefficient (0.129 kg/m2.s1/2), the prevention of moisture-related risks is a critical issue. Due to the high increase of the thermal conductivity (up to 400%), when saturated, the application of finishing materials is therefore decisive for the successful use of these renders in building envelopes. The numerical simulations highlighted significant hygrothermal risks at higher latitudes, observed by relevant temperature differences across the render thickness and significant external condensation potential.</description><subject>Absorptivity</subject><subject>Aerogel</subject><subject>Aerogels</subject><subject>Building envelopes</subject><subject>Building Façade</subject><subject>Climate</subject><subject>Climatic conditions</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hygrothermal properties</subject><subject>Multilayers</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Numerical simulation</subject><subject>Porosity</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermal render</subject><subject>Thermodynamic properties</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhiMEEmPwCEiROHfETZOmJ4QmYEiTuMA5yhJ3pOqakbQg3p6OjjMX25L9_7Y_Qq6BLYCBvG0W2G0G37pFznJYAABjcEJmoMo8k1CqUzJjvFRZWSp1Ti5SahhjUpQwI2b1vY2hf8e4My3dY6zDWHUWaaipoR1-0b-mwRi22GYbk9DRiJ3DSIff6HzqfWd7alu_M7231IbO-d6HLl2Ss9q0Ca-OeU7eHh9el6ts_fL0vLxfZ5bLos9cyQUWohICreEceVEjONiIAoywWHDJeK64VRbzUlSykLAZX6ikAlmJquZzcjP57mP4GDD1uglD7MaVOheCSVVVFR-nxDRlY0gpYq33cTw5fmtg-kBTN_pIUx9o6onmqLubdDi-8Okx6mQ9jpycj2h77YL_x-EHgTyAcQ</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Maia, J.</creator><creator>Pedroso, M.</creator><creator>Ramos, N.M.M.</creator><creator>Pereira, P.F.</creator><creator>Flores-Colen, I.</creator><creator>Gomes, M. Glória</creator><creator>Silva, L.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4038-6748</orcidid><orcidid>https://orcid.org/0000-0001-5036-8581</orcidid><orcidid>https://orcid.org/0000-0002-8119-6847</orcidid></search><sort><creationdate>20210715</creationdate><title>Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions</title><author>Maia, J. ; Pedroso, M. ; Ramos, N.M.M. ; Pereira, P.F. ; Flores-Colen, I. ; Gomes, M. Glória ; Silva, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d735e45955eca33e34fe1d1b541a5ce43603283c8ce27596461b65796816959f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorptivity</topic><topic>Aerogel</topic><topic>Aerogels</topic><topic>Building envelopes</topic><topic>Building Façade</topic><topic>Climate</topic><topic>Climatic conditions</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hygrothermal properties</topic><topic>Multilayers</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Numerical simulation</topic><topic>Porosity</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermal render</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maia, J.</creatorcontrib><creatorcontrib>Pedroso, M.</creatorcontrib><creatorcontrib>Ramos, N.M.M.</creatorcontrib><creatorcontrib>Pereira, P.F.</creatorcontrib><creatorcontrib>Flores-Colen, I.</creatorcontrib><creatorcontrib>Gomes, M. Glória</creatorcontrib><creatorcontrib>Silva, L.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maia, J.</au><au>Pedroso, M.</au><au>Ramos, N.M.M.</au><au>Pereira, P.F.</au><au>Flores-Colen, I.</au><au>Gomes, M. Glória</au><au>Silva, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions</atitle><jtitle>Energy and buildings</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>243</volume><spage>111001</spage><pages>111001-</pages><artnum>111001</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>[Display omitted] •The new aerogel-based render presents a low thermal conductivity (0.029 W/m.°C).•The thermal conductivity of the aerogel-based render increases with moisture content.•The coating contributes to reducing the hygrothermal risk due to its low capillary absorption.•Hygrothermal risks of aerogel based-renders increase in colder climates. Silica-aerogel is one of the nanomaterials that contributes to increasing the thermal properties, due to its high porosity and low density, and also low thermal conductivity. The development of innovative thermal renderings is a current trend, but their impact on the hygrothermal performance of façade systems requires additional investigation. The main goal of the present work consists of discussing the hygrothermal performance of a new thermal aerogel-based render when applied as a component of a multilayer coating system. To achieve this objective, relevant hygrothermal properties were determined. An accurate analysis of the hygrothermal impact, considering different European climates, was also performed. A clear improvement of the thermal conductivity of the new render, at dry-state, (0.029 W/m.°C) was found. As the observed high open porosity (≈83%) leads to a high capillary absorption coefficient (0.129 kg/m2.s1/2), the prevention of moisture-related risks is a critical issue. Due to the high increase of the thermal conductivity (up to 400%), when saturated, the application of finishing materials is therefore decisive for the successful use of these renders in building envelopes. The numerical simulations highlighted significant hygrothermal risks at higher latitudes, observed by relevant temperature differences across the render thickness and significant external condensation potential.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2021.111001</doi><orcidid>https://orcid.org/0000-0003-4038-6748</orcidid><orcidid>https://orcid.org/0000-0001-5036-8581</orcidid><orcidid>https://orcid.org/0000-0002-8119-6847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2021-07, Vol.243, p.111001, Article 111001
issn 0378-7788
1872-6178
language eng
recordid cdi_proquest_journals_2550689993
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Absorptivity
Aerogel
Aerogels
Building envelopes
Building Façade
Climate
Climatic conditions
Heat conductivity
Heat transfer
Hygrothermal properties
Multilayers
Nanomaterials
Nanotechnology
Numerical simulation
Porosity
Silica
Silicon dioxide
Temperature gradients
Thermal conductivity
Thermal properties
Thermal render
Thermodynamic properties
title Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hygrothermal%20performance%20of%20a%20new%20thermal%20aerogel-based%20render%20under%20distinct%20climatic%20conditions&rft.jtitle=Energy%20and%20buildings&rft.au=Maia,%20J.&rft.date=2021-07-15&rft.volume=243&rft.spage=111001&rft.pages=111001-&rft.artnum=111001&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2021.111001&rft_dat=%3Cproquest_cross%3E2550689993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550689993&rft_id=info:pmid/&rft_els_id=S0378778821002851&rfr_iscdi=true