Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging

Current defect inspection methods for photovoltaic (PV) devices based on electroluminescence (EL) imaging technology lack juggling both labor-saving and in-depth understanding of defects, restricting the progress towards yield improvement and higher efficiency. Herein, we propose an adaptive approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2021-08, Vol.229, p.120606, Article 120606
Hauptverfasser: Wang, Youyang, Li, Liying, Sun, Yifan, Xu, Jinjia, Jia, Yun, Hong, Jianyu, Hu, Xiaobo, Weng, Guoen, Luo, Xianjia, Chen, Shaoqiang, Zhu, Ziqiang, Chu, Junhao, Akiyama, Hidefumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120606
container_title Energy (Oxford)
container_volume 229
creator Wang, Youyang
Li, Liying
Sun, Yifan
Xu, Jinjia
Jia, Yun
Hong, Jianyu
Hu, Xiaobo
Weng, Guoen
Luo, Xianjia
Chen, Shaoqiang
Zhu, Ziqiang
Chu, Junhao
Akiyama, Hidefumi
description Current defect inspection methods for photovoltaic (PV) devices based on electroluminescence (EL) imaging technology lack juggling both labor-saving and in-depth understanding of defects, restricting the progress towards yield improvement and higher efficiency. Herein, we propose an adaptive approach for automatic solar cell defect detection and classification based on absolute EL imaging. Specifically, we first develop an unsupervised algorithm to automatically detect defects referring to the defect features in EL images. Then a diagnosis approach is proposed, which statistically classifies the detected defects based on the electrical origin. To the best of our knowledge, the proposed method is the first effort to integrate automatic defect detection with fine-grained classification. Experimental results on multiple types of solar cells show that the proposed method can achieve the average uncertainty of 5.15% at the minimum, with by up to 98.90% optimization ratio compared with two conventional methods. The proposed method is expected to provide more guiding feedback in both practical design and reliability diagnosis of the PV industry. An adaptive approach to automatically detect and classify defects in solar cells is proposed based on absolute electroluminescence (EL) imaging. We integrate the convenient automatic detection algorithm with the effective defect diagnosis solution so that in-depth defect detection and classification becomes feasible. To the best of our knowledge, the proposed method is the first effort to combine automatic defect detection with fine-grained classification based on electrical origin. [Display omitted] •An automatic method is proposed for solar cell defect detection and classification.•An unsupervised algorithm is designed for adaptive defect detection.•A standardized diagnosis scheme is developed for statistical defect classification.•Extensive experimental results verify the effectiveness of the proposed method.
doi_str_mv 10.1016/j.energy.2021.120606
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550689860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221008550</els_id><sourcerecordid>2550689860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2b733c5a5648d408797828fed0a8ae0f0f105b9b3b75d31b27f7aa3faf2f43273</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLg-vEPPAQ8d50kTZNehEX8AsGLnkOaTJYs3XZNugv-e7PWs6c3zLw3M-8RcsNgyYA1d5slDpjW30sOnC0ZhwaaE7JgWomqUVqekgWIBipZ1_ycXOS8AQCp23ZBxpW3uykekNr9NG7tFB3NY28Tddj31GNANxWYCsRxoHbw1PU25xiis7-tzmb09DjrinI_IcW-sFOpt3HA7HBwSOPWruOwviJnwfYZr__wknw-PX48vFRv78-vD6u3ygkNU8U7JYSTVja19jVo1SrNdUAPVluEAIGB7NpOdEp6wTqugrJWBBt4qAVX4pLcznt3afzaY57MZtynoZw0XEpodKsbKKx6Zrk05pwwmF0qj6Zvw8AcozUbM0drjtGaOdoiu59lWBwcIiaTXTy69DEV58aP8f8FPyxyhgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550689860</pqid></control><display><type>article</type><title>Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Youyang ; Li, Liying ; Sun, Yifan ; Xu, Jinjia ; Jia, Yun ; Hong, Jianyu ; Hu, Xiaobo ; Weng, Guoen ; Luo, Xianjia ; Chen, Shaoqiang ; Zhu, Ziqiang ; Chu, Junhao ; Akiyama, Hidefumi</creator><creatorcontrib>Wang, Youyang ; Li, Liying ; Sun, Yifan ; Xu, Jinjia ; Jia, Yun ; Hong, Jianyu ; Hu, Xiaobo ; Weng, Guoen ; Luo, Xianjia ; Chen, Shaoqiang ; Zhu, Ziqiang ; Chu, Junhao ; Akiyama, Hidefumi</creatorcontrib><description>Current defect inspection methods for photovoltaic (PV) devices based on electroluminescence (EL) imaging technology lack juggling both labor-saving and in-depth understanding of defects, restricting the progress towards yield improvement and higher efficiency. Herein, we propose an adaptive approach for automatic solar cell defect detection and classification based on absolute EL imaging. Specifically, we first develop an unsupervised algorithm to automatically detect defects referring to the defect features in EL images. Then a diagnosis approach is proposed, which statistically classifies the detected defects based on the electrical origin. To the best of our knowledge, the proposed method is the first effort to integrate automatic defect detection with fine-grained classification. Experimental results on multiple types of solar cells show that the proposed method can achieve the average uncertainty of 5.15% at the minimum, with by up to 98.90% optimization ratio compared with two conventional methods. The proposed method is expected to provide more guiding feedback in both practical design and reliability diagnosis of the PV industry. An adaptive approach to automatically detect and classify defects in solar cells is proposed based on absolute electroluminescence (EL) imaging. We integrate the convenient automatic detection algorithm with the effective defect diagnosis solution so that in-depth defect detection and classification becomes feasible. To the best of our knowledge, the proposed method is the first effort to combine automatic defect detection with fine-grained classification based on electrical origin. [Display omitted] •An automatic method is proposed for solar cell defect detection and classification.•An unsupervised algorithm is designed for adaptive defect detection.•A standardized diagnosis scheme is developed for statistical defect classification.•Extensive experimental results verify the effectiveness of the proposed method.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120606</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Absolute electroluminescence imaging ; Algorithms ; Automatic defect detection and classification ; Classification ; Defects ; Diagnosis ; Electroluminescence ; Imaging ; Inspection ; Optimization ; Photovoltaic cell ; Photovoltaic cells ; Photovoltaics ; Reliability diagnosis ; Solar cells</subject><ispartof>Energy (Oxford), 2021-08, Vol.229, p.120606, Article 120606</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2b733c5a5648d408797828fed0a8ae0f0f105b9b3b75d31b27f7aa3faf2f43273</citedby><cites>FETCH-LOGICAL-c380t-2b733c5a5648d408797828fed0a8ae0f0f105b9b3b75d31b27f7aa3faf2f43273</cites><orcidid>0000-0002-0458-3894 ; 0000-0002-4654-8552 ; 0000-0001-7908-9965 ; 0000-0002-7223-4215 ; 0000-0001-7786-2133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544221008550$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Youyang</creatorcontrib><creatorcontrib>Li, Liying</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Xu, Jinjia</creatorcontrib><creatorcontrib>Jia, Yun</creatorcontrib><creatorcontrib>Hong, Jianyu</creatorcontrib><creatorcontrib>Hu, Xiaobo</creatorcontrib><creatorcontrib>Weng, Guoen</creatorcontrib><creatorcontrib>Luo, Xianjia</creatorcontrib><creatorcontrib>Chen, Shaoqiang</creatorcontrib><creatorcontrib>Zhu, Ziqiang</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Akiyama, Hidefumi</creatorcontrib><title>Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging</title><title>Energy (Oxford)</title><description>Current defect inspection methods for photovoltaic (PV) devices based on electroluminescence (EL) imaging technology lack juggling both labor-saving and in-depth understanding of defects, restricting the progress towards yield improvement and higher efficiency. Herein, we propose an adaptive approach for automatic solar cell defect detection and classification based on absolute EL imaging. Specifically, we first develop an unsupervised algorithm to automatically detect defects referring to the defect features in EL images. Then a diagnosis approach is proposed, which statistically classifies the detected defects based on the electrical origin. To the best of our knowledge, the proposed method is the first effort to integrate automatic defect detection with fine-grained classification. Experimental results on multiple types of solar cells show that the proposed method can achieve the average uncertainty of 5.15% at the minimum, with by up to 98.90% optimization ratio compared with two conventional methods. The proposed method is expected to provide more guiding feedback in both practical design and reliability diagnosis of the PV industry. An adaptive approach to automatically detect and classify defects in solar cells is proposed based on absolute electroluminescence (EL) imaging. We integrate the convenient automatic detection algorithm with the effective defect diagnosis solution so that in-depth defect detection and classification becomes feasible. To the best of our knowledge, the proposed method is the first effort to combine automatic defect detection with fine-grained classification based on electrical origin. [Display omitted] •An automatic method is proposed for solar cell defect detection and classification.•An unsupervised algorithm is designed for adaptive defect detection.•A standardized diagnosis scheme is developed for statistical defect classification.•Extensive experimental results verify the effectiveness of the proposed method.</description><subject>Absolute electroluminescence imaging</subject><subject>Algorithms</subject><subject>Automatic defect detection and classification</subject><subject>Classification</subject><subject>Defects</subject><subject>Diagnosis</subject><subject>Electroluminescence</subject><subject>Imaging</subject><subject>Inspection</subject><subject>Optimization</subject><subject>Photovoltaic cell</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Reliability diagnosis</subject><subject>Solar cells</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLg-vEPPAQ8d50kTZNehEX8AsGLnkOaTJYs3XZNugv-e7PWs6c3zLw3M-8RcsNgyYA1d5slDpjW30sOnC0ZhwaaE7JgWomqUVqekgWIBipZ1_ycXOS8AQCp23ZBxpW3uykekNr9NG7tFB3NY28Tddj31GNANxWYCsRxoHbw1PU25xiis7-tzmb09DjrinI_IcW-sFOpt3HA7HBwSOPWruOwviJnwfYZr__wknw-PX48vFRv78-vD6u3ygkNU8U7JYSTVja19jVo1SrNdUAPVluEAIGB7NpOdEp6wTqugrJWBBt4qAVX4pLcznt3afzaY57MZtynoZw0XEpodKsbKKx6Zrk05pwwmF0qj6Zvw8AcozUbM0drjtGaOdoiu59lWBwcIiaTXTy69DEV58aP8f8FPyxyhgI</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Wang, Youyang</creator><creator>Li, Liying</creator><creator>Sun, Yifan</creator><creator>Xu, Jinjia</creator><creator>Jia, Yun</creator><creator>Hong, Jianyu</creator><creator>Hu, Xiaobo</creator><creator>Weng, Guoen</creator><creator>Luo, Xianjia</creator><creator>Chen, Shaoqiang</creator><creator>Zhu, Ziqiang</creator><creator>Chu, Junhao</creator><creator>Akiyama, Hidefumi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0458-3894</orcidid><orcidid>https://orcid.org/0000-0002-4654-8552</orcidid><orcidid>https://orcid.org/0000-0001-7908-9965</orcidid><orcidid>https://orcid.org/0000-0002-7223-4215</orcidid><orcidid>https://orcid.org/0000-0001-7786-2133</orcidid></search><sort><creationdate>20210815</creationdate><title>Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging</title><author>Wang, Youyang ; Li, Liying ; Sun, Yifan ; Xu, Jinjia ; Jia, Yun ; Hong, Jianyu ; Hu, Xiaobo ; Weng, Guoen ; Luo, Xianjia ; Chen, Shaoqiang ; Zhu, Ziqiang ; Chu, Junhao ; Akiyama, Hidefumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2b733c5a5648d408797828fed0a8ae0f0f105b9b3b75d31b27f7aa3faf2f43273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absolute electroluminescence imaging</topic><topic>Algorithms</topic><topic>Automatic defect detection and classification</topic><topic>Classification</topic><topic>Defects</topic><topic>Diagnosis</topic><topic>Electroluminescence</topic><topic>Imaging</topic><topic>Inspection</topic><topic>Optimization</topic><topic>Photovoltaic cell</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Reliability diagnosis</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Youyang</creatorcontrib><creatorcontrib>Li, Liying</creatorcontrib><creatorcontrib>Sun, Yifan</creatorcontrib><creatorcontrib>Xu, Jinjia</creatorcontrib><creatorcontrib>Jia, Yun</creatorcontrib><creatorcontrib>Hong, Jianyu</creatorcontrib><creatorcontrib>Hu, Xiaobo</creatorcontrib><creatorcontrib>Weng, Guoen</creatorcontrib><creatorcontrib>Luo, Xianjia</creatorcontrib><creatorcontrib>Chen, Shaoqiang</creatorcontrib><creatorcontrib>Zhu, Ziqiang</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Akiyama, Hidefumi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Youyang</au><au>Li, Liying</au><au>Sun, Yifan</au><au>Xu, Jinjia</au><au>Jia, Yun</au><au>Hong, Jianyu</au><au>Hu, Xiaobo</au><au>Weng, Guoen</au><au>Luo, Xianjia</au><au>Chen, Shaoqiang</au><au>Zhu, Ziqiang</au><au>Chu, Junhao</au><au>Akiyama, Hidefumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>229</volume><spage>120606</spage><pages>120606-</pages><artnum>120606</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Current defect inspection methods for photovoltaic (PV) devices based on electroluminescence (EL) imaging technology lack juggling both labor-saving and in-depth understanding of defects, restricting the progress towards yield improvement and higher efficiency. Herein, we propose an adaptive approach for automatic solar cell defect detection and classification based on absolute EL imaging. Specifically, we first develop an unsupervised algorithm to automatically detect defects referring to the defect features in EL images. Then a diagnosis approach is proposed, which statistically classifies the detected defects based on the electrical origin. To the best of our knowledge, the proposed method is the first effort to integrate automatic defect detection with fine-grained classification. Experimental results on multiple types of solar cells show that the proposed method can achieve the average uncertainty of 5.15% at the minimum, with by up to 98.90% optimization ratio compared with two conventional methods. The proposed method is expected to provide more guiding feedback in both practical design and reliability diagnosis of the PV industry. An adaptive approach to automatically detect and classify defects in solar cells is proposed based on absolute electroluminescence (EL) imaging. We integrate the convenient automatic detection algorithm with the effective defect diagnosis solution so that in-depth defect detection and classification becomes feasible. To the best of our knowledge, the proposed method is the first effort to combine automatic defect detection with fine-grained classification based on electrical origin. [Display omitted] •An automatic method is proposed for solar cell defect detection and classification.•An unsupervised algorithm is designed for adaptive defect detection.•A standardized diagnosis scheme is developed for statistical defect classification.•Extensive experimental results verify the effectiveness of the proposed method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120606</doi><orcidid>https://orcid.org/0000-0002-0458-3894</orcidid><orcidid>https://orcid.org/0000-0002-4654-8552</orcidid><orcidid>https://orcid.org/0000-0001-7908-9965</orcidid><orcidid>https://orcid.org/0000-0002-7223-4215</orcidid><orcidid>https://orcid.org/0000-0001-7786-2133</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2021-08, Vol.229, p.120606, Article 120606
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2550689860
source Elsevier ScienceDirect Journals
subjects Absolute electroluminescence imaging
Algorithms
Automatic defect detection and classification
Classification
Defects
Diagnosis
Electroluminescence
Imaging
Inspection
Optimization
Photovoltaic cell
Photovoltaic cells
Photovoltaics
Reliability diagnosis
Solar cells
title Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20automatic%20solar%20cell%20defect%20detection%20and%20classification%20based%20on%20absolute%20electroluminescence%20imaging&rft.jtitle=Energy%20(Oxford)&rft.au=Wang,%20Youyang&rft.date=2021-08-15&rft.volume=229&rft.spage=120606&rft.pages=120606-&rft.artnum=120606&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120606&rft_dat=%3Cproquest_cross%3E2550689860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550689860&rft_id=info:pmid/&rft_els_id=S0360544221008550&rfr_iscdi=true