A WKB derivation for internal waves generated by a horizontally moving body in a thermocline

An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wave motion 2021-09, Vol.105, p.102759, Article 102759
Hauptverfasser: Broutman, Dave, Brandt, Laura, Rottman, James W., Taylor, Cecily K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102759
container_title Wave motion
container_volume 105
creator Broutman, Dave
Brandt, Laura
Rottman, James W.
Taylor, Cecily K.
description An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient.
doi_str_mv 10.1016/j.wavemoti.2021.102759
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550682231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212521000573</els_id><sourcerecordid>2550682231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QQKup-YxM0121uILBTeKLoSQJrdthpmkJmml_nqnVNeuLtx7zuGeD6FzSkaU0PqyGX3pDXQhuxEjjPZLNq7kARpQMRZFyfn7IRr0wqpglFXH6CSlhhBCx1wO0McEvz1eYwvRbXR2weN5iNj5DNHrFu-SE16Ah6gzWDzbYo2XIbrv4LNu2y3uwsb5BZ4Fu-1t_TUvIXbBtM7DKTqa6zbB2e8cotfbm5fpffH0fPcwnTwVhguRC16yeW2ImFlmjSipJpWgpZSgWc2pFDUBZhhIkJWUtaa2NiUrZamFrLiQlg_RxT53FcPnGlJWTVjv_k-KVRWpBWOc9qp6rzIxpBRhrlbRdTpuFSVqR1I16o-k2pFUe5K98WpvhL7DxkFUyTjwBqyLYLKywf0X8QNwpn9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550682231</pqid></control><display><type>article</type><title>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Broutman, Dave ; Brandt, Laura ; Rottman, James W. ; Taylor, Cecily K.</creator><creatorcontrib>Broutman, Dave ; Brandt, Laura ; Rottman, James W. ; Taylor, Cecily K.</creatorcontrib><description>An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2021.102759</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Eigenvectors ; Expansion ; Harmonic analysis ; Internal waves ; Propagation ; Stratified flow ; Studies ; Surface waves ; Velocity ; Wakes ; Wave propagation ; WKB approximation</subject><ispartof>Wave motion, 2021-09, Vol.105, p.102759, Article 102759</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</citedby><cites>FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</cites><orcidid>0000-0001-5164-9975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2021.102759$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Broutman, Dave</creatorcontrib><creatorcontrib>Brandt, Laura</creatorcontrib><creatorcontrib>Rottman, James W.</creatorcontrib><creatorcontrib>Taylor, Cecily K.</creatorcontrib><title>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</title><title>Wave motion</title><description>An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient.</description><subject>Eigenvectors</subject><subject>Expansion</subject><subject>Harmonic analysis</subject><subject>Internal waves</subject><subject>Propagation</subject><subject>Stratified flow</subject><subject>Studies</subject><subject>Surface waves</subject><subject>Velocity</subject><subject>Wakes</subject><subject>Wave propagation</subject><subject>WKB approximation</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QQKup-YxM0121uILBTeKLoSQJrdthpmkJmml_nqnVNeuLtx7zuGeD6FzSkaU0PqyGX3pDXQhuxEjjPZLNq7kARpQMRZFyfn7IRr0wqpglFXH6CSlhhBCx1wO0McEvz1eYwvRbXR2weN5iNj5DNHrFu-SE16Ah6gzWDzbYo2XIbrv4LNu2y3uwsb5BZ4Fu-1t_TUvIXbBtM7DKTqa6zbB2e8cotfbm5fpffH0fPcwnTwVhguRC16yeW2ImFlmjSipJpWgpZSgWc2pFDUBZhhIkJWUtaa2NiUrZamFrLiQlg_RxT53FcPnGlJWTVjv_k-KVRWpBWOc9qp6rzIxpBRhrlbRdTpuFSVqR1I16o-k2pFUe5K98WpvhL7DxkFUyTjwBqyLYLKywf0X8QNwpn9w</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Broutman, Dave</creator><creator>Brandt, Laura</creator><creator>Rottman, James W.</creator><creator>Taylor, Cecily K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5164-9975</orcidid></search><sort><creationdate>202109</creationdate><title>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</title><author>Broutman, Dave ; Brandt, Laura ; Rottman, James W. ; Taylor, Cecily K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Eigenvectors</topic><topic>Expansion</topic><topic>Harmonic analysis</topic><topic>Internal waves</topic><topic>Propagation</topic><topic>Stratified flow</topic><topic>Studies</topic><topic>Surface waves</topic><topic>Velocity</topic><topic>Wakes</topic><topic>Wave propagation</topic><topic>WKB approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broutman, Dave</creatorcontrib><creatorcontrib>Brandt, Laura</creatorcontrib><creatorcontrib>Rottman, James W.</creatorcontrib><creatorcontrib>Taylor, Cecily K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broutman, Dave</au><au>Brandt, Laura</au><au>Rottman, James W.</au><au>Taylor, Cecily K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</atitle><jtitle>Wave motion</jtitle><date>2021-09</date><risdate>2021</risdate><volume>105</volume><spage>102759</spage><pages>102759-</pages><artnum>102759</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2021.102759</doi><orcidid>https://orcid.org/0000-0001-5164-9975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2021-09, Vol.105, p.102759, Article 102759
issn 0165-2125
1878-433X
language eng
recordid cdi_proquest_journals_2550682231
source ScienceDirect Journals (5 years ago - present)
subjects Eigenvectors
Expansion
Harmonic analysis
Internal waves
Propagation
Stratified flow
Studies
Surface waves
Velocity
Wakes
Wave propagation
WKB approximation
title A WKB derivation for internal waves generated by a horizontally moving body in a thermocline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20WKB%20derivation%20for%20internal%20waves%20generated%20by%20a%20horizontally%20moving%20body%20in%20a%20thermocline&rft.jtitle=Wave%20motion&rft.au=Broutman,%20Dave&rft.date=2021-09&rft.volume=105&rft.spage=102759&rft.pages=102759-&rft.artnum=102759&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2021.102759&rft_dat=%3Cproquest_cross%3E2550682231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550682231&rft_id=info:pmid/&rft_els_id=S0165212521000573&rfr_iscdi=true