A WKB derivation for internal waves generated by a horizontally moving body in a thermocline
An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solut...
Gespeichert in:
Veröffentlicht in: | Wave motion 2021-09, Vol.105, p.102759, Article 102759 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 102759 |
container_title | Wave motion |
container_volume | 105 |
creator | Broutman, Dave Brandt, Laura Rottman, James W. Taylor, Cecily K. |
description | An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient. |
doi_str_mv | 10.1016/j.wavemoti.2021.102759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550682231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212521000573</els_id><sourcerecordid>2550682231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QQKup-YxM0121uILBTeKLoSQJrdthpmkJmml_nqnVNeuLtx7zuGeD6FzSkaU0PqyGX3pDXQhuxEjjPZLNq7kARpQMRZFyfn7IRr0wqpglFXH6CSlhhBCx1wO0McEvz1eYwvRbXR2weN5iNj5DNHrFu-SE16Ah6gzWDzbYo2XIbrv4LNu2y3uwsb5BZ4Fu-1t_TUvIXbBtM7DKTqa6zbB2e8cotfbm5fpffH0fPcwnTwVhguRC16yeW2ImFlmjSipJpWgpZSgWc2pFDUBZhhIkJWUtaa2NiUrZamFrLiQlg_RxT53FcPnGlJWTVjv_k-KVRWpBWOc9qp6rzIxpBRhrlbRdTpuFSVqR1I16o-k2pFUe5K98WpvhL7DxkFUyTjwBqyLYLKywf0X8QNwpn9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550682231</pqid></control><display><type>article</type><title>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Broutman, Dave ; Brandt, Laura ; Rottman, James W. ; Taylor, Cecily K.</creator><creatorcontrib>Broutman, Dave ; Brandt, Laura ; Rottman, James W. ; Taylor, Cecily K.</creatorcontrib><description>An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2021.102759</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Eigenvectors ; Expansion ; Harmonic analysis ; Internal waves ; Propagation ; Stratified flow ; Studies ; Surface waves ; Velocity ; Wakes ; Wave propagation ; WKB approximation</subject><ispartof>Wave motion, 2021-09, Vol.105, p.102759, Article 102759</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</citedby><cites>FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</cites><orcidid>0000-0001-5164-9975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2021.102759$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Broutman, Dave</creatorcontrib><creatorcontrib>Brandt, Laura</creatorcontrib><creatorcontrib>Rottman, James W.</creatorcontrib><creatorcontrib>Taylor, Cecily K.</creatorcontrib><title>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</title><title>Wave motion</title><description>An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient.</description><subject>Eigenvectors</subject><subject>Expansion</subject><subject>Harmonic analysis</subject><subject>Internal waves</subject><subject>Propagation</subject><subject>Stratified flow</subject><subject>Studies</subject><subject>Surface waves</subject><subject>Velocity</subject><subject>Wakes</subject><subject>Wave propagation</subject><subject>WKB approximation</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QQKup-YxM0121uILBTeKLoSQJrdthpmkJmml_nqnVNeuLtx7zuGeD6FzSkaU0PqyGX3pDXQhuxEjjPZLNq7kARpQMRZFyfn7IRr0wqpglFXH6CSlhhBCx1wO0McEvz1eYwvRbXR2weN5iNj5DNHrFu-SE16Ah6gzWDzbYo2XIbrv4LNu2y3uwsb5BZ4Fu-1t_TUvIXbBtM7DKTqa6zbB2e8cotfbm5fpffH0fPcwnTwVhguRC16yeW2ImFlmjSipJpWgpZSgWc2pFDUBZhhIkJWUtaa2NiUrZamFrLiQlg_RxT53FcPnGlJWTVjv_k-KVRWpBWOc9qp6rzIxpBRhrlbRdTpuFSVqR1I16o-k2pFUe5K98WpvhL7DxkFUyTjwBqyLYLKywf0X8QNwpn9w</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Broutman, Dave</creator><creator>Brandt, Laura</creator><creator>Rottman, James W.</creator><creator>Taylor, Cecily K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5164-9975</orcidid></search><sort><creationdate>202109</creationdate><title>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</title><author>Broutman, Dave ; Brandt, Laura ; Rottman, James W. ; Taylor, Cecily K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-342f6c08bd2dc841a0581499ea26319860e2c2e9e95996a1d6c42494a895389d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Eigenvectors</topic><topic>Expansion</topic><topic>Harmonic analysis</topic><topic>Internal waves</topic><topic>Propagation</topic><topic>Stratified flow</topic><topic>Studies</topic><topic>Surface waves</topic><topic>Velocity</topic><topic>Wakes</topic><topic>Wave propagation</topic><topic>WKB approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broutman, Dave</creatorcontrib><creatorcontrib>Brandt, Laura</creatorcontrib><creatorcontrib>Rottman, James W.</creatorcontrib><creatorcontrib>Taylor, Cecily K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broutman, Dave</au><au>Brandt, Laura</au><au>Rottman, James W.</au><au>Taylor, Cecily K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A WKB derivation for internal waves generated by a horizontally moving body in a thermocline</atitle><jtitle>Wave motion</jtitle><date>2021-09</date><risdate>2021</risdate><volume>105</volume><spage>102759</spage><pages>102759-</pages><artnum>102759</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>An approximate solution for the steady linear internal wave field generated by a localized, horizontally moving source in a thermocline is derived using ray and WKB (Wentzel–Kramers–Brillouin) theory. The waves are assumed to be steady in a reference frame moving with the source velocity. This solution is shown to agree in the limit of propagating waves with an existing solution that is expressed in terms of an eigenfunction expansion. The WKB method is shown to reproduce all the factors in the eigenfunction solution, not just the eigenfunctions themselves. It also reveals the physical significance of the terms in the eigenfunction solution. Furthermore, the WKB solution suggests an alternate way to compute the wave field numerically that is computationally more efficient.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2021.102759</doi><orcidid>https://orcid.org/0000-0001-5164-9975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-2125 |
ispartof | Wave motion, 2021-09, Vol.105, p.102759, Article 102759 |
issn | 0165-2125 1878-433X |
language | eng |
recordid | cdi_proquest_journals_2550682231 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Eigenvectors Expansion Harmonic analysis Internal waves Propagation Stratified flow Studies Surface waves Velocity Wakes Wave propagation WKB approximation |
title | A WKB derivation for internal waves generated by a horizontally moving body in a thermocline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20WKB%20derivation%20for%20internal%20waves%20generated%20by%20a%20horizontally%20moving%20body%20in%20a%20thermocline&rft.jtitle=Wave%20motion&rft.au=Broutman,%20Dave&rft.date=2021-09&rft.volume=105&rft.spage=102759&rft.pages=102759-&rft.artnum=102759&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2021.102759&rft_dat=%3Cproquest_cross%3E2550682231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550682231&rft_id=info:pmid/&rft_els_id=S0165212521000573&rfr_iscdi=true |