FDTD Simulation of Magnetic Field Distribution in Normal and Blood Cancer for Treatment

Non-invasive cancer treatment has the potential to eliminate infection and scar formation associated with surgery to minimize side effects. Light stimulation can use for treatment to increase efficiency, reduce treatment costs, eliminate infection, etc. Magnetic fields can improve blood circulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-06, Vol.1951 (1), p.12061
Hauptverfasser: Zulfa, V Z, Farahdina, U, Firdhaus, M, Aziz, I, Nasori, N, Endarko, E, Darsono, D, Rubiyanto, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12061
container_title Journal of physics. Conference series
container_volume 1951
creator Zulfa, V Z
Farahdina, U
Firdhaus, M
Aziz, I
Nasori, N
Endarko, E
Darsono, D
Rubiyanto, A
description Non-invasive cancer treatment has the potential to eliminate infection and scar formation associated with surgery to minimize side effects. Light stimulation can use for treatment to increase efficiency, reduce treatment costs, eliminate infection, etc. Magnetic fields can improve blood circulation in tissues and stimulate the body’s metabolism. The magnetic field can induce joule heating and expand the blood vessels of cancerous tumors. These blood vessels increase the possibility of excess oxygen to enter the tumor creating obstacles to the survival of oxygen-rich cancers. In this study, we investigate finite difference times domain (FTDT) simulation of magnetic field in normal and blood cancer. The low frequency with range 10-10 6 is used in this study. The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there is no peak for blood cancer in final stage CLL2.
doi_str_mv 10.1088/1742-6596/1951/1/012061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550680783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550680783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2741-40ccce48bf3e9239e875228bf84db516f82197aadb1bb6796eb56a154405a2823</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgO-CbVJ2lz6qF3XC-sFdsXHkLapZGmbmrQP_ntbKyuC4LzMDHPOGfgAOMXoAiMhQsxjEjCasBAnFIc4RJgghvfAbHfZ381CHIIj77cIRUPxGXhdLjYLuDZ1X6nO2AbaEj6ot0Z3JodLo6sCLozvnMn6r7Np4KN1taqgagp4VVlbwFQ1uXawtA5unFZdrZvuGByUqvL65LvPwcvyepPeBqunm7v0chXkhMc4iFGe5zoWWRnphESJFpwSMqwiLjKKWSkITrhSRYazjPGE6YwyhWkcI6qIINEcnE25rbPvvfad3NreNcNLSShFTCAuokHFJ1XurPdOl7J1plbuQ2IkR4py5CNHVnKkKLGcKA7OaHIa2_5E_-86_8N1_5yufwtlW5TRJ9lNgCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550680783</pqid></control><display><type>article</type><title>FDTD Simulation of Magnetic Field Distribution in Normal and Blood Cancer for Treatment</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zulfa, V Z ; Farahdina, U ; Firdhaus, M ; Aziz, I ; Nasori, N ; Endarko, E ; Darsono, D ; Rubiyanto, A</creator><creatorcontrib>Zulfa, V Z ; Farahdina, U ; Firdhaus, M ; Aziz, I ; Nasori, N ; Endarko, E ; Darsono, D ; Rubiyanto, A</creatorcontrib><description>Non-invasive cancer treatment has the potential to eliminate infection and scar formation associated with surgery to minimize side effects. Light stimulation can use for treatment to increase efficiency, reduce treatment costs, eliminate infection, etc. Magnetic fields can improve blood circulation in tissues and stimulate the body’s metabolism. The magnetic field can induce joule heating and expand the blood vessels of cancerous tumors. These blood vessels increase the possibility of excess oxygen to enter the tumor creating obstacles to the survival of oxygen-rich cancers. In this study, we investigate finite difference times domain (FTDT) simulation of magnetic field in normal and blood cancer. The low frequency with range 10-10 6 is used in this study. The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there is no peak for blood cancer in final stage CLL2.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1951/1/012061</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Blood cancer ; Blood circulation ; Blood vessels ; Cancer ; Electrodes ; Finite difference time domain method ; Magnetic domains ; Magnetic fields ; Ohmic dissipation ; Oxygen ; Resistance heating ; Side effects ; Tumors</subject><ispartof>Journal of physics. Conference series, 2021-06, Vol.1951 (1), p.12061</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2741-40ccce48bf3e9239e875228bf84db516f82197aadb1bb6796eb56a154405a2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1951/1/012061/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Zulfa, V Z</creatorcontrib><creatorcontrib>Farahdina, U</creatorcontrib><creatorcontrib>Firdhaus, M</creatorcontrib><creatorcontrib>Aziz, I</creatorcontrib><creatorcontrib>Nasori, N</creatorcontrib><creatorcontrib>Endarko, E</creatorcontrib><creatorcontrib>Darsono, D</creatorcontrib><creatorcontrib>Rubiyanto, A</creatorcontrib><title>FDTD Simulation of Magnetic Field Distribution in Normal and Blood Cancer for Treatment</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Non-invasive cancer treatment has the potential to eliminate infection and scar formation associated with surgery to minimize side effects. Light stimulation can use for treatment to increase efficiency, reduce treatment costs, eliminate infection, etc. Magnetic fields can improve blood circulation in tissues and stimulate the body’s metabolism. The magnetic field can induce joule heating and expand the blood vessels of cancerous tumors. These blood vessels increase the possibility of excess oxygen to enter the tumor creating obstacles to the survival of oxygen-rich cancers. In this study, we investigate finite difference times domain (FTDT) simulation of magnetic field in normal and blood cancer. The low frequency with range 10-10 6 is used in this study. The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there is no peak for blood cancer in final stage CLL2.</description><subject>Blood cancer</subject><subject>Blood circulation</subject><subject>Blood vessels</subject><subject>Cancer</subject><subject>Electrodes</subject><subject>Finite difference time domain method</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Ohmic dissipation</subject><subject>Oxygen</subject><subject>Resistance heating</subject><subject>Side effects</subject><subject>Tumors</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLxDAQhYMouK7-BgO-CbVJ2lz6qF3XC-sFdsXHkLapZGmbmrQP_ntbKyuC4LzMDHPOGfgAOMXoAiMhQsxjEjCasBAnFIc4RJgghvfAbHfZ381CHIIj77cIRUPxGXhdLjYLuDZ1X6nO2AbaEj6ot0Z3JodLo6sCLozvnMn6r7Np4KN1taqgagp4VVlbwFQ1uXawtA5unFZdrZvuGByUqvL65LvPwcvyepPeBqunm7v0chXkhMc4iFGe5zoWWRnphESJFpwSMqwiLjKKWSkITrhSRYazjPGE6YwyhWkcI6qIINEcnE25rbPvvfad3NreNcNLSShFTCAuokHFJ1XurPdOl7J1plbuQ2IkR4py5CNHVnKkKLGcKA7OaHIa2_5E_-86_8N1_5yufwtlW5TRJ9lNgCI</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zulfa, V Z</creator><creator>Farahdina, U</creator><creator>Firdhaus, M</creator><creator>Aziz, I</creator><creator>Nasori, N</creator><creator>Endarko, E</creator><creator>Darsono, D</creator><creator>Rubiyanto, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210601</creationdate><title>FDTD Simulation of Magnetic Field Distribution in Normal and Blood Cancer for Treatment</title><author>Zulfa, V Z ; Farahdina, U ; Firdhaus, M ; Aziz, I ; Nasori, N ; Endarko, E ; Darsono, D ; Rubiyanto, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2741-40ccce48bf3e9239e875228bf84db516f82197aadb1bb6796eb56a154405a2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood cancer</topic><topic>Blood circulation</topic><topic>Blood vessels</topic><topic>Cancer</topic><topic>Electrodes</topic><topic>Finite difference time domain method</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Ohmic dissipation</topic><topic>Oxygen</topic><topic>Resistance heating</topic><topic>Side effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zulfa, V Z</creatorcontrib><creatorcontrib>Farahdina, U</creatorcontrib><creatorcontrib>Firdhaus, M</creatorcontrib><creatorcontrib>Aziz, I</creatorcontrib><creatorcontrib>Nasori, N</creatorcontrib><creatorcontrib>Endarko, E</creatorcontrib><creatorcontrib>Darsono, D</creatorcontrib><creatorcontrib>Rubiyanto, A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zulfa, V Z</au><au>Farahdina, U</au><au>Firdhaus, M</au><au>Aziz, I</au><au>Nasori, N</au><au>Endarko, E</au><au>Darsono, D</au><au>Rubiyanto, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FDTD Simulation of Magnetic Field Distribution in Normal and Blood Cancer for Treatment</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>1951</volume><issue>1</issue><spage>12061</spage><pages>12061-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Non-invasive cancer treatment has the potential to eliminate infection and scar formation associated with surgery to minimize side effects. Light stimulation can use for treatment to increase efficiency, reduce treatment costs, eliminate infection, etc. Magnetic fields can improve blood circulation in tissues and stimulate the body’s metabolism. The magnetic field can induce joule heating and expand the blood vessels of cancerous tumors. These blood vessels increase the possibility of excess oxygen to enter the tumor creating obstacles to the survival of oxygen-rich cancers. In this study, we investigate finite difference times domain (FTDT) simulation of magnetic field in normal and blood cancer. The low frequency with range 10-10 6 is used in this study. The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there The maximum magnetic field for normal blood and CLL1 is 400 nm and 250 nm in 125 cm electrode size. While for 50 nm electrode size, the maximum magnetic field in normal blood and CLL 1 is 400 nm and 300 nm. But there is no peak for blood cancer in final stage CLL2.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1951/1/012061</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-06, Vol.1951 (1), p.12061
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2550680783
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Blood cancer
Blood circulation
Blood vessels
Cancer
Electrodes
Finite difference time domain method
Magnetic domains
Magnetic fields
Ohmic dissipation
Oxygen
Resistance heating
Side effects
Tumors
title FDTD Simulation of Magnetic Field Distribution in Normal and Blood Cancer for Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FDTD%20Simulation%20of%20Magnetic%20Field%20Distribution%20in%20Normal%20and%20Blood%20Cancer%20for%20Treatment&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zulfa,%20V%20Z&rft.date=2021-06-01&rft.volume=1951&rft.issue=1&rft.spage=12061&rft.pages=12061-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1951/1/012061&rft_dat=%3Cproquest_cross%3E2550680783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550680783&rft_id=info:pmid/&rfr_iscdi=true