Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes

The orbital angular momentum (OAM) of light has been at the center of several classical and quantum applications for imaging, information processing and communication. However, the complex structure inherent in OAM states makes their detection and classification nontrivial in many circumstances. Mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-07, Vol.23 (7), p.73014
Hauptverfasser: Suprano, Alessia, Zia, Danilo, Polino, Emanuele, Giordani, Taira, Innocenti, Luca, Paternostro, Mauro, Ferraro, Alessandro, Spagnolo, Nicolò, Sciarrino, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 73014
container_title New journal of physics
container_volume 23
creator Suprano, Alessia
Zia, Danilo
Polino, Emanuele
Giordani, Taira
Innocenti, Luca
Paternostro, Mauro
Ferraro, Alessandro
Spagnolo, Nicolò
Sciarrino, Fabio
description The orbital angular momentum (OAM) of light has been at the center of several classical and quantum applications for imaging, information processing and communication. However, the complex structure inherent in OAM states makes their detection and classification nontrivial in many circumstances. Most of the current detection schemes are based on models of the OAM states built upon the use of Laguerre–Gauss (LG) modes. However, this may not in general be sufficient to capture full information on the generated states. In this paper, we go beyond the LG assumption, and employ hypergeometric-Gaussian (HyGG) modes as the basis states of a refined model that can be used—in certain scenarios—to better tailor OAM detection techniques. We show that enhanced performances in OAM detection are obtained for holographic projection via spatial light modulators in combination with single-mode fibers (SMFs), and for classification techniques based on a machine learning approach. Furthermore, a three-fold enhancement in the SMF coupling efficiency is obtained for the holographic technique, when using the HyGG model with respect to the LG one. This improvement provides a significant boost in the overall efficiency of OAM-encoded single-photon detection systems. Given that most of the experimental works using OAM states are effectively based on the generation of HyGG modes, our findings thus represent a relevant addition to experimental toolboxes for OAM-based protocols in quantum communication, cryptography and simulation.
doi_str_mv 10.1088/1367-2630/ac0c53
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550677604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8fa596c949064cf9b0287cccf0b4aaed</doaj_id><sourcerecordid>2550677604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-2fff9cb74260318c7c8a6d0be40ef774fe0dc2d3c02ed55240e5998e15f413f13</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxSNEJUrbO0dLHLiwdPyR2DmiqkClSlzo2XLG9q5XSZzazoH_Hu8GFQ5wGuvp955Hb5rmHYVPFJS6pbyTO9ZxuDUI2PJXzeWL9Pqv95vmbc5HAEoVY5eNu58PZkZniXXFYQlxJnUe5vC8ukyiJzENoZiRmHm_jiaRKU5uLutEcjGlIqEaDo7gaHIOeAYteV7NmUluHyaXr5sLb8bsbn7Pq-bpy_2Pu2-7x-9fH-4-P-5QCFV2zHvf4yAF64BThRKV6SwMToDzUgrvwCKzHIE527asym3fK0dbLyj3lF81D1uujeaolxQmk37qaII-CzHttUkl4Oi08qbtO-xFD51A3w_AlERED4Mwxtma9X7LWlI8dVH0Ma5prutr1rbQSdmBqBRsFKaYc3L-5VcK-nQYfWpen5rX22Gq5cNmCXH5kzkfF824lhokByr0Yn0lP_6D_G_wL4l-nWQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550677604</pqid></control><display><type>article</type><title>Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Suprano, Alessia ; Zia, Danilo ; Polino, Emanuele ; Giordani, Taira ; Innocenti, Luca ; Paternostro, Mauro ; Ferraro, Alessandro ; Spagnolo, Nicolò ; Sciarrino, Fabio</creator><creatorcontrib>Suprano, Alessia ; Zia, Danilo ; Polino, Emanuele ; Giordani, Taira ; Innocenti, Luca ; Paternostro, Mauro ; Ferraro, Alessandro ; Spagnolo, Nicolò ; Sciarrino, Fabio</creatorcontrib><description>The orbital angular momentum (OAM) of light has been at the center of several classical and quantum applications for imaging, information processing and communication. However, the complex structure inherent in OAM states makes their detection and classification nontrivial in many circumstances. Most of the current detection schemes are based on models of the OAM states built upon the use of Laguerre–Gauss (LG) modes. However, this may not in general be sufficient to capture full information on the generated states. In this paper, we go beyond the LG assumption, and employ hypergeometric-Gaussian (HyGG) modes as the basis states of a refined model that can be used—in certain scenarios—to better tailor OAM detection techniques. We show that enhanced performances in OAM detection are obtained for holographic projection via spatial light modulators in combination with single-mode fibers (SMFs), and for classification techniques based on a machine learning approach. Furthermore, a three-fold enhancement in the SMF coupling efficiency is obtained for the holographic technique, when using the HyGG model with respect to the LG one. This improvement provides a significant boost in the overall efficiency of OAM-encoded single-photon detection systems. Given that most of the experimental works using OAM states are effectively based on the generation of HyGG modes, our findings thus represent a relevant addition to experimental toolboxes for OAM-based protocols in quantum communication, cryptography and simulation.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac0c53</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Angular momentum ; Classification ; Communication ; Cryptography ; Data processing ; Efficiency ; Holography ; hypergeometric-Gaussian mode ; Laguerre–Gaussian mode ; Light ; Machine learning ; orbital angular momentum ; Physics ; Spatial light modulators ; vector vortex beam</subject><ispartof>New journal of physics, 2021-07, Vol.23 (7), p.73014</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-2fff9cb74260318c7c8a6d0be40ef774fe0dc2d3c02ed55240e5998e15f413f13</citedby><cites>FETCH-LOGICAL-c448t-2fff9cb74260318c7c8a6d0be40ef774fe0dc2d3c02ed55240e5998e15f413f13</cites><orcidid>0000-0003-3471-2252 ; 0000-0003-1438-8942 ; 0000-0001-8870-9134 ; 0000-0003-1715-245X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ac0c53/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Suprano, Alessia</creatorcontrib><creatorcontrib>Zia, Danilo</creatorcontrib><creatorcontrib>Polino, Emanuele</creatorcontrib><creatorcontrib>Giordani, Taira</creatorcontrib><creatorcontrib>Innocenti, Luca</creatorcontrib><creatorcontrib>Paternostro, Mauro</creatorcontrib><creatorcontrib>Ferraro, Alessandro</creatorcontrib><creatorcontrib>Spagnolo, Nicolò</creatorcontrib><creatorcontrib>Sciarrino, Fabio</creatorcontrib><title>Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The orbital angular momentum (OAM) of light has been at the center of several classical and quantum applications for imaging, information processing and communication. However, the complex structure inherent in OAM states makes their detection and classification nontrivial in many circumstances. Most of the current detection schemes are based on models of the OAM states built upon the use of Laguerre–Gauss (LG) modes. However, this may not in general be sufficient to capture full information on the generated states. In this paper, we go beyond the LG assumption, and employ hypergeometric-Gaussian (HyGG) modes as the basis states of a refined model that can be used—in certain scenarios—to better tailor OAM detection techniques. We show that enhanced performances in OAM detection are obtained for holographic projection via spatial light modulators in combination with single-mode fibers (SMFs), and for classification techniques based on a machine learning approach. Furthermore, a three-fold enhancement in the SMF coupling efficiency is obtained for the holographic technique, when using the HyGG model with respect to the LG one. This improvement provides a significant boost in the overall efficiency of OAM-encoded single-photon detection systems. Given that most of the experimental works using OAM states are effectively based on the generation of HyGG modes, our findings thus represent a relevant addition to experimental toolboxes for OAM-based protocols in quantum communication, cryptography and simulation.</description><subject>Angular momentum</subject><subject>Classification</subject><subject>Communication</subject><subject>Cryptography</subject><subject>Data processing</subject><subject>Efficiency</subject><subject>Holography</subject><subject>hypergeometric-Gaussian mode</subject><subject>Laguerre–Gaussian mode</subject><subject>Light</subject><subject>Machine learning</subject><subject>orbital angular momentum</subject><subject>Physics</subject><subject>Spatial light modulators</subject><subject>vector vortex beam</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1v1DAQxSNEJUrbO0dLHLiwdPyR2DmiqkClSlzo2XLG9q5XSZzazoH_Hu8GFQ5wGuvp955Hb5rmHYVPFJS6pbyTO9ZxuDUI2PJXzeWL9Pqv95vmbc5HAEoVY5eNu58PZkZniXXFYQlxJnUe5vC8ukyiJzENoZiRmHm_jiaRKU5uLutEcjGlIqEaDo7gaHIOeAYteV7NmUluHyaXr5sLb8bsbn7Pq-bpy_2Pu2-7x-9fH-4-P-5QCFV2zHvf4yAF64BThRKV6SwMToDzUgrvwCKzHIE527asym3fK0dbLyj3lF81D1uujeaolxQmk37qaII-CzHttUkl4Oi08qbtO-xFD51A3w_AlERED4Mwxtma9X7LWlI8dVH0Ma5prutr1rbQSdmBqBRsFKaYc3L-5VcK-nQYfWpen5rX22Gq5cNmCXH5kzkfF824lhokByr0Yn0lP_6D_G_wL4l-nWQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Suprano, Alessia</creator><creator>Zia, Danilo</creator><creator>Polino, Emanuele</creator><creator>Giordani, Taira</creator><creator>Innocenti, Luca</creator><creator>Paternostro, Mauro</creator><creator>Ferraro, Alessandro</creator><creator>Spagnolo, Nicolò</creator><creator>Sciarrino, Fabio</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3471-2252</orcidid><orcidid>https://orcid.org/0000-0003-1438-8942</orcidid><orcidid>https://orcid.org/0000-0001-8870-9134</orcidid><orcidid>https://orcid.org/0000-0003-1715-245X</orcidid></search><sort><creationdate>20210701</creationdate><title>Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes</title><author>Suprano, Alessia ; Zia, Danilo ; Polino, Emanuele ; Giordani, Taira ; Innocenti, Luca ; Paternostro, Mauro ; Ferraro, Alessandro ; Spagnolo, Nicolò ; Sciarrino, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-2fff9cb74260318c7c8a6d0be40ef774fe0dc2d3c02ed55240e5998e15f413f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular momentum</topic><topic>Classification</topic><topic>Communication</topic><topic>Cryptography</topic><topic>Data processing</topic><topic>Efficiency</topic><topic>Holography</topic><topic>hypergeometric-Gaussian mode</topic><topic>Laguerre–Gaussian mode</topic><topic>Light</topic><topic>Machine learning</topic><topic>orbital angular momentum</topic><topic>Physics</topic><topic>Spatial light modulators</topic><topic>vector vortex beam</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suprano, Alessia</creatorcontrib><creatorcontrib>Zia, Danilo</creatorcontrib><creatorcontrib>Polino, Emanuele</creatorcontrib><creatorcontrib>Giordani, Taira</creatorcontrib><creatorcontrib>Innocenti, Luca</creatorcontrib><creatorcontrib>Paternostro, Mauro</creatorcontrib><creatorcontrib>Ferraro, Alessandro</creatorcontrib><creatorcontrib>Spagnolo, Nicolò</creatorcontrib><creatorcontrib>Sciarrino, Fabio</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suprano, Alessia</au><au>Zia, Danilo</au><au>Polino, Emanuele</au><au>Giordani, Taira</au><au>Innocenti, Luca</au><au>Paternostro, Mauro</au><au>Ferraro, Alessandro</au><au>Spagnolo, Nicolò</au><au>Sciarrino, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>23</volume><issue>7</issue><spage>73014</spage><pages>73014-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The orbital angular momentum (OAM) of light has been at the center of several classical and quantum applications for imaging, information processing and communication. However, the complex structure inherent in OAM states makes their detection and classification nontrivial in many circumstances. Most of the current detection schemes are based on models of the OAM states built upon the use of Laguerre–Gauss (LG) modes. However, this may not in general be sufficient to capture full information on the generated states. In this paper, we go beyond the LG assumption, and employ hypergeometric-Gaussian (HyGG) modes as the basis states of a refined model that can be used—in certain scenarios—to better tailor OAM detection techniques. We show that enhanced performances in OAM detection are obtained for holographic projection via spatial light modulators in combination with single-mode fibers (SMFs), and for classification techniques based on a machine learning approach. Furthermore, a three-fold enhancement in the SMF coupling efficiency is obtained for the holographic technique, when using the HyGG model with respect to the LG one. This improvement provides a significant boost in the overall efficiency of OAM-encoded single-photon detection systems. Given that most of the experimental works using OAM states are effectively based on the generation of HyGG modes, our findings thus represent a relevant addition to experimental toolboxes for OAM-based protocols in quantum communication, cryptography and simulation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac0c53</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3471-2252</orcidid><orcidid>https://orcid.org/0000-0003-1438-8942</orcidid><orcidid>https://orcid.org/0000-0001-8870-9134</orcidid><orcidid>https://orcid.org/0000-0003-1715-245X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2021-07, Vol.23 (7), p.73014
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2550677604
source Institute of Physics IOPscience extra; IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Angular momentum
Classification
Communication
Cryptography
Data processing
Efficiency
Holography
hypergeometric-Gaussian mode
Laguerre–Gaussian mode
Light
Machine learning
orbital angular momentum
Physics
Spatial light modulators
vector vortex beam
title Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20detection%20techniques%20of%20orbital%20angular%20momentum%20states%20in%20the%20classical%20and%20quantum%20regimes&rft.jtitle=New%20journal%20of%20physics&rft.au=Suprano,%20Alessia&rft.date=2021-07-01&rft.volume=23&rft.issue=7&rft.spage=73014&rft.pages=73014-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac0c53&rft_dat=%3Cproquest_cross%3E2550677604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550677604&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8fa596c949064cf9b0287cccf0b4aaed&rfr_iscdi=true