A functional error analysis of differential optical flow methods

We analyze the sources of error in differential optical flow methods using techniques for the analysis of partial differential equations. We first derive an a priori error bound for the estimated optical flow field. We then systematically interpret this error bound and show that the estimation error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2021-08, Vol.62 (8), Article 159
Hauptverfasser: Kumashiro, Keishi, Steinberg, Adam M., Yano, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Experiments in fluids
container_volume 62
creator Kumashiro, Keishi
Steinberg, Adam M.
Yano, Masayuki
description We analyze the sources of error in differential optical flow methods using techniques for the analysis of partial differential equations. We first derive an a priori error bound for the estimated optical flow field. We then systematically interpret this error bound and show that the estimation error is primarily bounded by the best-fit approximation error —which quantifies the fidelity with which one can represent the true optical flow field by a chosen or learned set of basis functions—divided by a stability constant —which quantifies one’s ability to infer the optical flow field given the information content of the acquired data. We also show that the estimation error is bounded by effects associated with the finite temporal and spatial resolution of the acquired data. In particular, we show that the main finite resolution effects are related to the finite differencing and time averaging of the measured intensity fields. Finally, we demonstrate the error bound numerically using synthetic three-dimensional data sets based on direct numerical simulations of homogeneous isotropic turbulence and transitional boundary layer flow provided by Johns Hopkins University (Li et al. in J Turbul 9:N31, 2008; Zaki in Flow Turbul Combust in 91(3):451–473, 2013). Graphic abstract
doi_str_mv 10.1007/s00348-021-03244-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550667396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550667396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-809202f5ef1a82077f5330e7136b60fb7b976e231af76b0975c0f89a0720c093</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMoWFe_gKeC5-h7SZo0N5fFf7DgZe8h7SbapdvUpIvstzdawZunefBmhuFHyDXCLQKouwTARU2BIQXOhKB4QgoUnFFEFKekAMU4FbUU5-QipR0AVhrqgtwvS38Y2qkLg-1LF2OIpc3nMXWpDL7cdt676Iapy-8wTl2b1ffhs9y76T1s0yU587ZP7upXF2Tz-LBZPdP169PLarmmLUc90Ro0A-Yr59HWDJTyFefgFHLZSPCNarSSjnG0XskGtKpa8LW2eTe0oPmC3My1YwwfB5cmswuHmIcmw6oKpFRcy-xis6uNIaXovBljt7fxaBDMNygzgzIZlPkBZTCH-BxK2Ty8ufhX_U_qC8rdab4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550667396</pqid></control><display><type>article</type><title>A functional error analysis of differential optical flow methods</title><source>SpringerNature Journals</source><creator>Kumashiro, Keishi ; Steinberg, Adam M. ; Yano, Masayuki</creator><creatorcontrib>Kumashiro, Keishi ; Steinberg, Adam M. ; Yano, Masayuki</creatorcontrib><description>We analyze the sources of error in differential optical flow methods using techniques for the analysis of partial differential equations. We first derive an a priori error bound for the estimated optical flow field. We then systematically interpret this error bound and show that the estimation error is primarily bounded by the best-fit approximation error —which quantifies the fidelity with which one can represent the true optical flow field by a chosen or learned set of basis functions—divided by a stability constant —which quantifies one’s ability to infer the optical flow field given the information content of the acquired data. We also show that the estimation error is bounded by effects associated with the finite temporal and spatial resolution of the acquired data. In particular, we show that the main finite resolution effects are related to the finite differencing and time averaging of the measured intensity fields. Finally, we demonstrate the error bound numerically using synthetic three-dimensional data sets based on direct numerical simulations of homogeneous isotropic turbulence and transitional boundary layer flow provided by Johns Hopkins University (Li et al. in J Turbul 9:N31, 2008; Zaki in Flow Turbul Combust in 91(3):451–473, 2013). Graphic abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-021-03244-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Basis functions ; Boundary layer flow ; Boundary layer transition ; Computational fluid dynamics ; Data acquisition ; Direct numerical simulation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Error analysis ; Flow stability ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Isotropic turbulence ; Mathematical analysis ; Optical flow (image analysis) ; Partial differential equations ; Pedestrians ; Research Article ; Spatial resolution</subject><ispartof>Experiments in fluids, 2021-08, Vol.62 (8), Article 159</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-809202f5ef1a82077f5330e7136b60fb7b976e231af76b0975c0f89a0720c093</citedby><cites>FETCH-LOGICAL-c319t-809202f5ef1a82077f5330e7136b60fb7b976e231af76b0975c0f89a0720c093</cites><orcidid>0000-0003-3456-7577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-021-03244-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-021-03244-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Kumashiro, Keishi</creatorcontrib><creatorcontrib>Steinberg, Adam M.</creatorcontrib><creatorcontrib>Yano, Masayuki</creatorcontrib><title>A functional error analysis of differential optical flow methods</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>We analyze the sources of error in differential optical flow methods using techniques for the analysis of partial differential equations. We first derive an a priori error bound for the estimated optical flow field. We then systematically interpret this error bound and show that the estimation error is primarily bounded by the best-fit approximation error —which quantifies the fidelity with which one can represent the true optical flow field by a chosen or learned set of basis functions—divided by a stability constant —which quantifies one’s ability to infer the optical flow field given the information content of the acquired data. We also show that the estimation error is bounded by effects associated with the finite temporal and spatial resolution of the acquired data. In particular, we show that the main finite resolution effects are related to the finite differencing and time averaging of the measured intensity fields. Finally, we demonstrate the error bound numerically using synthetic three-dimensional data sets based on direct numerical simulations of homogeneous isotropic turbulence and transitional boundary layer flow provided by Johns Hopkins University (Li et al. in J Turbul 9:N31, 2008; Zaki in Flow Turbul Combust in 91(3):451–473, 2013). Graphic abstract</description><subject>Basis functions</subject><subject>Boundary layer flow</subject><subject>Boundary layer transition</subject><subject>Computational fluid dynamics</subject><subject>Data acquisition</subject><subject>Direct numerical simulation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Error analysis</subject><subject>Flow stability</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Isotropic turbulence</subject><subject>Mathematical analysis</subject><subject>Optical flow (image analysis)</subject><subject>Partial differential equations</subject><subject>Pedestrians</subject><subject>Research Article</subject><subject>Spatial resolution</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMoWFe_gKeC5-h7SZo0N5fFf7DgZe8h7SbapdvUpIvstzdawZunefBmhuFHyDXCLQKouwTARU2BIQXOhKB4QgoUnFFEFKekAMU4FbUU5-QipR0AVhrqgtwvS38Y2qkLg-1LF2OIpc3nMXWpDL7cdt676Iapy-8wTl2b1ffhs9y76T1s0yU587ZP7upXF2Tz-LBZPdP169PLarmmLUc90Ro0A-Yr59HWDJTyFefgFHLZSPCNarSSjnG0XskGtKpa8LW2eTe0oPmC3My1YwwfB5cmswuHmIcmw6oKpFRcy-xis6uNIaXovBljt7fxaBDMNygzgzIZlPkBZTCH-BxK2Ty8ufhX_U_qC8rdab4</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kumashiro, Keishi</creator><creator>Steinberg, Adam M.</creator><creator>Yano, Masayuki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3456-7577</orcidid></search><sort><creationdate>20210801</creationdate><title>A functional error analysis of differential optical flow methods</title><author>Kumashiro, Keishi ; Steinberg, Adam M. ; Yano, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-809202f5ef1a82077f5330e7136b60fb7b976e231af76b0975c0f89a0720c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basis functions</topic><topic>Boundary layer flow</topic><topic>Boundary layer transition</topic><topic>Computational fluid dynamics</topic><topic>Data acquisition</topic><topic>Direct numerical simulation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Error analysis</topic><topic>Flow stability</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Isotropic turbulence</topic><topic>Mathematical analysis</topic><topic>Optical flow (image analysis)</topic><topic>Partial differential equations</topic><topic>Pedestrians</topic><topic>Research Article</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumashiro, Keishi</creatorcontrib><creatorcontrib>Steinberg, Adam M.</creatorcontrib><creatorcontrib>Yano, Masayuki</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumashiro, Keishi</au><au>Steinberg, Adam M.</au><au>Yano, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A functional error analysis of differential optical flow methods</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>62</volume><issue>8</issue><artnum>159</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>We analyze the sources of error in differential optical flow methods using techniques for the analysis of partial differential equations. We first derive an a priori error bound for the estimated optical flow field. We then systematically interpret this error bound and show that the estimation error is primarily bounded by the best-fit approximation error —which quantifies the fidelity with which one can represent the true optical flow field by a chosen or learned set of basis functions—divided by a stability constant —which quantifies one’s ability to infer the optical flow field given the information content of the acquired data. We also show that the estimation error is bounded by effects associated with the finite temporal and spatial resolution of the acquired data. In particular, we show that the main finite resolution effects are related to the finite differencing and time averaging of the measured intensity fields. Finally, we demonstrate the error bound numerically using synthetic three-dimensional data sets based on direct numerical simulations of homogeneous isotropic turbulence and transitional boundary layer flow provided by Johns Hopkins University (Li et al. in J Turbul 9:N31, 2008; Zaki in Flow Turbul Combust in 91(3):451–473, 2013). Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-021-03244-1</doi><orcidid>https://orcid.org/0000-0003-3456-7577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2021-08, Vol.62 (8), Article 159
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_2550667396
source SpringerNature Journals
subjects Basis functions
Boundary layer flow
Boundary layer transition
Computational fluid dynamics
Data acquisition
Direct numerical simulation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Error analysis
Flow stability
Fluid- and Aerodynamics
Heat and Mass Transfer
Isotropic turbulence
Mathematical analysis
Optical flow (image analysis)
Partial differential equations
Pedestrians
Research Article
Spatial resolution
title A functional error analysis of differential optical flow methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20functional%20error%20analysis%20of%20differential%20optical%20flow%20methods&rft.jtitle=Experiments%20in%20fluids&rft.au=Kumashiro,%20Keishi&rft.date=2021-08-01&rft.volume=62&rft.issue=8&rft.artnum=159&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-021-03244-1&rft_dat=%3Cproquest_cross%3E2550667396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550667396&rft_id=info:pmid/&rfr_iscdi=true