Dirac Magnons in a Honeycomb Lattice Quantum XY Magnet CoTiO3

The discovery of massless Dirac electrons in graphene and topological Dirac-Weyl materials has prompted a broad search for bosonic analogues of such Dirac particles. Recent experiments have found evidence for Dirac magnons above an Ising-like ferromagnetic ground state in a two-dimensional (2D) kago...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2020-03, Vol.10 (1)
Hauptverfasser: Yuan, Bo, Khait, Ilia, Guo-Jiun Shu, Chou, F C, Stone, M B, Clancy, J P, Paramekanti, Arun, Young-June, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. X
container_volume 10
creator Yuan, Bo
Khait, Ilia
Guo-Jiun Shu
Chou, F C
Stone, M B
Clancy, J P
Paramekanti, Arun
Young-June, Kim
description The discovery of massless Dirac electrons in graphene and topological Dirac-Weyl materials has prompted a broad search for bosonic analogues of such Dirac particles. Recent experiments have found evidence for Dirac magnons above an Ising-like ferromagnetic ground state in a two-dimensional (2D) kagome lattice magnet and in the van der Waals layered honeycomb crystalCrI3, and in a 3D Heisenberg magnetCu3TeO6. Here, we report our inelastic neutron scattering investigation on a large single crystal of a stacked honeycomb lattice magnetCoTiO3, which is part of a broad family of ilmenite materials. The magnetically ordered ground state ofCoTiO3features ferromagnetic layers ofCo2+, stacked antiferromagnetically along thecaxis. The magnon dispersion relation is described very well with a simple magnetic Hamiltonian with strong easy-plane exchange anisotropy. Importantly, a magnon Dirac cone is found along the edge of the 3D Brillouin zone. Our results establishCoTiO3as a model pseudospin-1/2material to study interacting Dirac bosons in a 3D quantumXYmagnet.
doi_str_mv 10.1103/PhysRevX.10.011062
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2550635125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550635125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-d095ca6badc9a83242b8ac2c1225328385be5eea877cd4eeca5ca78cd2dfa0803</originalsourceid><addsrcrecordid>eNotjVFLwzAUhYMgOOb-gE8Bnztvbpo2e_BBqtuEylQmzKdxm2ba4RJtUmH_3qCelwOHj-8wdiFgKgTIq8f3Y3i235tpGiAtBZ6wEYoCMilBn7FJCHtIKUDkZTli17ddT4Y_0JvzLvDOceJL7-zR-EPDa4qxM5Y_DeTicOCb11_SRl75dbeS5-x0Rx_BTv57zF7md-tqmdWrxX11U2cGJcashZkyVDTUmhlpiTk2mgwagagkaqlVY5W1pMvStLm1hhJeatNiuyPQIMfs8s_72fuvwYa43fuhd-lyi0pBIZVIph9vbEno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550635125</pqid></control><display><type>article</type><title>Dirac Magnons in a Honeycomb Lattice Quantum XY Magnet CoTiO3</title><source>DOAJ Directory of Open Access Journals</source><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yuan, Bo ; Khait, Ilia ; Guo-Jiun Shu ; Chou, F C ; Stone, M B ; Clancy, J P ; Paramekanti, Arun ; Young-June, Kim</creator><creatorcontrib>Yuan, Bo ; Khait, Ilia ; Guo-Jiun Shu ; Chou, F C ; Stone, M B ; Clancy, J P ; Paramekanti, Arun ; Young-June, Kim</creatorcontrib><description>The discovery of massless Dirac electrons in graphene and topological Dirac-Weyl materials has prompted a broad search for bosonic analogues of such Dirac particles. Recent experiments have found evidence for Dirac magnons above an Ising-like ferromagnetic ground state in a two-dimensional (2D) kagome lattice magnet and in the van der Waals layered honeycomb crystalCrI3, and in a 3D Heisenberg magnetCu3TeO6. Here, we report our inelastic neutron scattering investigation on a large single crystal of a stacked honeycomb lattice magnetCoTiO3, which is part of a broad family of ilmenite materials. The magnetically ordered ground state ofCoTiO3features ferromagnetic layers ofCo2+, stacked antiferromagnetically along thecaxis. The magnon dispersion relation is described very well with a simple magnetic Hamiltonian with strong easy-plane exchange anisotropy. Importantly, a magnon Dirac cone is found along the edge of the 3D Brillouin zone. Our results establishCoTiO3as a model pseudospin-1/2material to study interacting Dirac bosons in a 3D quantumXYmagnet.</description><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.10.011062</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Antiferromagnetism ; Bosons ; Brillouin zones ; Condensed matter physics ; Crystal lattices ; Electrons ; Fermions ; Ferromagnetic materials ; Graphene ; Ground state ; Ilmenite ; Inelastic scattering ; Ising model ; Kagome lattice ; Magnons ; Momentum ; Neutron scattering ; Particle physics ; Pauli exclusion principle ; Physicists ; Single crystals</subject><ispartof>Physical review. X, 2020-03, Vol.10 (1)</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-d095ca6badc9a83242b8ac2c1225328385be5eea877cd4eeca5ca78cd2dfa0803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Yuan, Bo</creatorcontrib><creatorcontrib>Khait, Ilia</creatorcontrib><creatorcontrib>Guo-Jiun Shu</creatorcontrib><creatorcontrib>Chou, F C</creatorcontrib><creatorcontrib>Stone, M B</creatorcontrib><creatorcontrib>Clancy, J P</creatorcontrib><creatorcontrib>Paramekanti, Arun</creatorcontrib><creatorcontrib>Young-June, Kim</creatorcontrib><title>Dirac Magnons in a Honeycomb Lattice Quantum XY Magnet CoTiO3</title><title>Physical review. X</title><description>The discovery of massless Dirac electrons in graphene and topological Dirac-Weyl materials has prompted a broad search for bosonic analogues of such Dirac particles. Recent experiments have found evidence for Dirac magnons above an Ising-like ferromagnetic ground state in a two-dimensional (2D) kagome lattice magnet and in the van der Waals layered honeycomb crystalCrI3, and in a 3D Heisenberg magnetCu3TeO6. Here, we report our inelastic neutron scattering investigation on a large single crystal of a stacked honeycomb lattice magnetCoTiO3, which is part of a broad family of ilmenite materials. The magnetically ordered ground state ofCoTiO3features ferromagnetic layers ofCo2+, stacked antiferromagnetically along thecaxis. The magnon dispersion relation is described very well with a simple magnetic Hamiltonian with strong easy-plane exchange anisotropy. Importantly, a magnon Dirac cone is found along the edge of the 3D Brillouin zone. Our results establishCoTiO3as a model pseudospin-1/2material to study interacting Dirac bosons in a 3D quantumXYmagnet.</description><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Bosons</subject><subject>Brillouin zones</subject><subject>Condensed matter physics</subject><subject>Crystal lattices</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Ferromagnetic materials</subject><subject>Graphene</subject><subject>Ground state</subject><subject>Ilmenite</subject><subject>Inelastic scattering</subject><subject>Ising model</subject><subject>Kagome lattice</subject><subject>Magnons</subject><subject>Momentum</subject><subject>Neutron scattering</subject><subject>Particle physics</subject><subject>Pauli exclusion principle</subject><subject>Physicists</subject><subject>Single crystals</subject><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjVFLwzAUhYMgOOb-gE8Bnztvbpo2e_BBqtuEylQmzKdxm2ba4RJtUmH_3qCelwOHj-8wdiFgKgTIq8f3Y3i235tpGiAtBZ6wEYoCMilBn7FJCHtIKUDkZTli17ddT4Y_0JvzLvDOceJL7-zR-EPDa4qxM5Y_DeTicOCb11_SRl75dbeS5-x0Rx_BTv57zF7md-tqmdWrxX11U2cGJcashZkyVDTUmhlpiTk2mgwagagkaqlVY5W1pMvStLm1hhJeatNiuyPQIMfs8s_72fuvwYa43fuhd-lyi0pBIZVIph9vbEno</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Yuan, Bo</creator><creator>Khait, Ilia</creator><creator>Guo-Jiun Shu</creator><creator>Chou, F C</creator><creator>Stone, M B</creator><creator>Clancy, J P</creator><creator>Paramekanti, Arun</creator><creator>Young-June, Kim</creator><general>American Physical Society</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200312</creationdate><title>Dirac Magnons in a Honeycomb Lattice Quantum XY Magnet CoTiO3</title><author>Yuan, Bo ; Khait, Ilia ; Guo-Jiun Shu ; Chou, F C ; Stone, M B ; Clancy, J P ; Paramekanti, Arun ; Young-June, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-d095ca6badc9a83242b8ac2c1225328385be5eea877cd4eeca5ca78cd2dfa0803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Bosons</topic><topic>Brillouin zones</topic><topic>Condensed matter physics</topic><topic>Crystal lattices</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Ferromagnetic materials</topic><topic>Graphene</topic><topic>Ground state</topic><topic>Ilmenite</topic><topic>Inelastic scattering</topic><topic>Ising model</topic><topic>Kagome lattice</topic><topic>Magnons</topic><topic>Momentum</topic><topic>Neutron scattering</topic><topic>Particle physics</topic><topic>Pauli exclusion principle</topic><topic>Physicists</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Bo</creatorcontrib><creatorcontrib>Khait, Ilia</creatorcontrib><creatorcontrib>Guo-Jiun Shu</creatorcontrib><creatorcontrib>Chou, F C</creatorcontrib><creatorcontrib>Stone, M B</creatorcontrib><creatorcontrib>Clancy, J P</creatorcontrib><creatorcontrib>Paramekanti, Arun</creatorcontrib><creatorcontrib>Young-June, Kim</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Bo</au><au>Khait, Ilia</au><au>Guo-Jiun Shu</au><au>Chou, F C</au><au>Stone, M B</au><au>Clancy, J P</au><au>Paramekanti, Arun</au><au>Young-June, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirac Magnons in a Honeycomb Lattice Quantum XY Magnet CoTiO3</atitle><jtitle>Physical review. X</jtitle><date>2020-03-12</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><eissn>2160-3308</eissn><abstract>The discovery of massless Dirac electrons in graphene and topological Dirac-Weyl materials has prompted a broad search for bosonic analogues of such Dirac particles. Recent experiments have found evidence for Dirac magnons above an Ising-like ferromagnetic ground state in a two-dimensional (2D) kagome lattice magnet and in the van der Waals layered honeycomb crystalCrI3, and in a 3D Heisenberg magnetCu3TeO6. Here, we report our inelastic neutron scattering investigation on a large single crystal of a stacked honeycomb lattice magnetCoTiO3, which is part of a broad family of ilmenite materials. The magnetically ordered ground state ofCoTiO3features ferromagnetic layers ofCo2+, stacked antiferromagnetically along thecaxis. The magnon dispersion relation is described very well with a simple magnetic Hamiltonian with strong easy-plane exchange anisotropy. Importantly, a magnon Dirac cone is found along the edge of the 3D Brillouin zone. Our results establishCoTiO3as a model pseudospin-1/2material to study interacting Dirac bosons in a 3D quantumXYmagnet.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.10.011062</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2160-3308
ispartof Physical review. X, 2020-03, Vol.10 (1)
issn 2160-3308
language eng
recordid cdi_proquest_journals_2550635125
source DOAJ Directory of Open Access Journals; American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Anisotropy
Antiferromagnetism
Bosons
Brillouin zones
Condensed matter physics
Crystal lattices
Electrons
Fermions
Ferromagnetic materials
Graphene
Ground state
Ilmenite
Inelastic scattering
Ising model
Kagome lattice
Magnons
Momentum
Neutron scattering
Particle physics
Pauli exclusion principle
Physicists
Single crystals
title Dirac Magnons in a Honeycomb Lattice Quantum XY Magnet CoTiO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirac%20Magnons%20in%20a%20Honeycomb%20Lattice%20Quantum%20XY%20Magnet%20CoTiO3&rft.jtitle=Physical%20review.%20X&rft.au=Yuan,%20Bo&rft.date=2020-03-12&rft.volume=10&rft.issue=1&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.10.011062&rft_dat=%3Cproquest%3E2550635125%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550635125&rft_id=info:pmid/&rfr_iscdi=true