Assessing restaurant review helpfulness through big data: dual-process and social influence theory

Purpose This study aims to uncover how heuristic information cues (HIC) and systematic information cues (SIC) of online reviews influence review helpfulness and examine a moderating role of social influence in the process of assessing review helpfulness. In particular, this study conceptualizes a th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hospitality and tourism technology 2021-07, Vol.12 (2), p.177-195
Hauptverfasser: Kwon, Wooseok, Lee, Minwoo, Back, Ki-Joon, Lee, Kyung Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 177
container_title Journal of hospitality and tourism technology
container_volume 12
creator Kwon, Wooseok
Lee, Minwoo
Back, Ki-Joon
Lee, Kyung Young
description Purpose This study aims to uncover how heuristic information cues (HIC) and systematic information cues (SIC) of online reviews influence review helpfulness and examine a moderating role of social influence in the process of assessing review helpfulness. In particular, this study conceptualizes a theoretical framework based on dual-process and social influence theory (SIT) and empirically tests the proposed hypotheses by analyzing a broad set of actual customer review data. Design/methodology/approach For 4,177,377 online reviews posted on Yelp.com from 2004 to 2018, this study used data mining and text analysis to extract independent variables. Zero-inflated negative binomial regression analysis was conducted to test the hypothesized model. Findings The present study demonstrates that both HIC and SIC have a significant relationship with review helpfulness. Normative social influence cue (NSIC) strengthened the relationship between HIC and review helpfulness. However, the moderating effect of NSIC was not valid in the relationship between SIC and review helpfulness. Originality/value This study contributes to the extant research on review helpfulness by providing a conceptual framework underpinned by dual-process theory and SIT. The study not only identifies determinants of review helpfulness but also reveals how social influences can impact individuals’ judgment on review helpfulness. By offering a state-of-the-art analysis with a vast amount of online reviews, this study contributes to the methodological improvement of further empirical research. 研究目的 本论文旨在揭示网络评论的启发性信息源和系统性信息源对于评论有用性的影响, 以及检验社会影响在评论有用性的调节作用。其中, 本论文基于双重历程理论和社会影响理论来构建理论模型, 并且利用实际数据来验证假设, 通过分析一系列实际客户评论数据。 研究设计/方法/途径 本论文样本数据为2004年至2018年Yelp.com上面的4,177,377网络评论。本论文采用数据挖掘和文本分析的方法来提取自变量。本论文采用零膨胀负二项回归模型来验证假设。 研究结果 研究结果表明, 启发性和系统性信息源都对网络评论有用性有着显著作用。规范性社会影响加强了启发性信息源对评论有用性的作用。然而, 规范性社会影响对系统性信息源与评论有用性的关系并未起到有效的调节作用。 研究原创性/价值 本论文对现有评论有用性的文献有着补充贡献, 其采用双重历程理论和社会影响理论来构建理论模型。本论文不仅指出评论有用性的影响因素, 而且展示了社会影响如何影响个人对评论有用性的判断。本论文的样本数据庞大, 数据分析夯实, 这对于进一步的实际测量研究有着方法改进方面的贡献。
doi_str_mv 10.1108/JHTT-04-2020-0077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550581562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550581562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a35c5d1de38b87d365aff0af884e176cd5f061f5b458690783dcfea1bf278ad93</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqf0B3gKeo5PNZpP1VopapeClnkM2H-2W7W5NdpX-e7O0CIJzmQfz3ny8QeiWwj2lIB_elus1gZxkkAEBEOICTajggpSyLC9_sYRrNItxBylYJguZTVA1j9HFWLcbHFzs9RB02yf4VbtvvHXNwQ9Nmwi434Zu2GxxVW-w1b1-xHbQDTmEzoxl3VocO1PrBtetbwbXGpc0rgvHG3TldRPd7Jyn6OP5ab1YktX7y-tiviKG0bwnmnHDLbWOyUoKywquvQftpcwdFYWx3ENBPa9yLosShGTWeKdp5TMhtS3ZFN2d-qadPod0jNp1Q2jTSJVxDlxSXmSJRU8sE7oYg_PqEOq9DkdFQY1uqtFNBbka3VSjm0kDJ43bu6Ab-6_kzwPYD3CQeBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550581562</pqid></control><display><type>article</type><title>Assessing restaurant review helpfulness through big data: dual-process and social influence theory</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Kwon, Wooseok ; Lee, Minwoo ; Back, Ki-Joon ; Lee, Kyung Young</creator><creatorcontrib>Kwon, Wooseok ; Lee, Minwoo ; Back, Ki-Joon ; Lee, Kyung Young</creatorcontrib><description>Purpose This study aims to uncover how heuristic information cues (HIC) and systematic information cues (SIC) of online reviews influence review helpfulness and examine a moderating role of social influence in the process of assessing review helpfulness. In particular, this study conceptualizes a theoretical framework based on dual-process and social influence theory (SIT) and empirically tests the proposed hypotheses by analyzing a broad set of actual customer review data. Design/methodology/approach For 4,177,377 online reviews posted on Yelp.com from 2004 to 2018, this study used data mining and text analysis to extract independent variables. Zero-inflated negative binomial regression analysis was conducted to test the hypothesized model. Findings The present study demonstrates that both HIC and SIC have a significant relationship with review helpfulness. Normative social influence cue (NSIC) strengthened the relationship between HIC and review helpfulness. However, the moderating effect of NSIC was not valid in the relationship between SIC and review helpfulness. Originality/value This study contributes to the extant research on review helpfulness by providing a conceptual framework underpinned by dual-process theory and SIT. The study not only identifies determinants of review helpfulness but also reveals how social influences can impact individuals’ judgment on review helpfulness. By offering a state-of-the-art analysis with a vast amount of online reviews, this study contributes to the methodological improvement of further empirical research. 研究目的 本论文旨在揭示网络评论的启发性信息源和系统性信息源对于评论有用性的影响, 以及检验社会影响在评论有用性的调节作用。其中, 本论文基于双重历程理论和社会影响理论来构建理论模型, 并且利用实际数据来验证假设, 通过分析一系列实际客户评论数据。 研究设计/方法/途径 本论文样本数据为2004年至2018年Yelp.com上面的4,177,377网络评论。本论文采用数据挖掘和文本分析的方法来提取自变量。本论文采用零膨胀负二项回归模型来验证假设。 研究结果 研究结果表明, 启发性和系统性信息源都对网络评论有用性有着显著作用。规范性社会影响加强了启发性信息源对评论有用性的作用。然而, 规范性社会影响对系统性信息源与评论有用性的关系并未起到有效的调节作用。 研究原创性/价值 本论文对现有评论有用性的文献有着补充贡献, 其采用双重历程理论和社会影响理论来构建理论模型。本论文不仅指出评论有用性的影响因素, 而且展示了社会影响如何影响个人对评论有用性的判断。本论文的样本数据庞大, 数据分析夯实, 这对于进一步的实际测量研究有着方法改进方面的贡献。</description><identifier>ISSN: 1757-9880</identifier><identifier>EISSN: 1757-9899</identifier><identifier>DOI: 10.1108/JHTT-04-2020-0077</identifier><language>eng</language><publisher>Bingley: Emerald Publishing Limited</publisher><subject>Cognition &amp; reasoning ; Customers ; Decision making ; Heuristic ; Information processing ; Ratings &amp; rankings ; Social networks ; Tourism</subject><ispartof>Journal of hospitality and tourism technology, 2021-07, Vol.12 (2), p.177-195</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-a35c5d1de38b87d365aff0af884e176cd5f061f5b458690783dcfea1bf278ad93</citedby><cites>FETCH-LOGICAL-c314t-a35c5d1de38b87d365aff0af884e176cd5f061f5b458690783dcfea1bf278ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/JHTT-04-2020-0077/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,21694,27923,27924,52688,53243</link.rule.ids></links><search><creatorcontrib>Kwon, Wooseok</creatorcontrib><creatorcontrib>Lee, Minwoo</creatorcontrib><creatorcontrib>Back, Ki-Joon</creatorcontrib><creatorcontrib>Lee, Kyung Young</creatorcontrib><title>Assessing restaurant review helpfulness through big data: dual-process and social influence theory</title><title>Journal of hospitality and tourism technology</title><description>Purpose This study aims to uncover how heuristic information cues (HIC) and systematic information cues (SIC) of online reviews influence review helpfulness and examine a moderating role of social influence in the process of assessing review helpfulness. In particular, this study conceptualizes a theoretical framework based on dual-process and social influence theory (SIT) and empirically tests the proposed hypotheses by analyzing a broad set of actual customer review data. Design/methodology/approach For 4,177,377 online reviews posted on Yelp.com from 2004 to 2018, this study used data mining and text analysis to extract independent variables. Zero-inflated negative binomial regression analysis was conducted to test the hypothesized model. Findings The present study demonstrates that both HIC and SIC have a significant relationship with review helpfulness. Normative social influence cue (NSIC) strengthened the relationship between HIC and review helpfulness. However, the moderating effect of NSIC was not valid in the relationship between SIC and review helpfulness. Originality/value This study contributes to the extant research on review helpfulness by providing a conceptual framework underpinned by dual-process theory and SIT. The study not only identifies determinants of review helpfulness but also reveals how social influences can impact individuals’ judgment on review helpfulness. By offering a state-of-the-art analysis with a vast amount of online reviews, this study contributes to the methodological improvement of further empirical research. 研究目的 本论文旨在揭示网络评论的启发性信息源和系统性信息源对于评论有用性的影响, 以及检验社会影响在评论有用性的调节作用。其中, 本论文基于双重历程理论和社会影响理论来构建理论模型, 并且利用实际数据来验证假设, 通过分析一系列实际客户评论数据。 研究设计/方法/途径 本论文样本数据为2004年至2018年Yelp.com上面的4,177,377网络评论。本论文采用数据挖掘和文本分析的方法来提取自变量。本论文采用零膨胀负二项回归模型来验证假设。 研究结果 研究结果表明, 启发性和系统性信息源都对网络评论有用性有着显著作用。规范性社会影响加强了启发性信息源对评论有用性的作用。然而, 规范性社会影响对系统性信息源与评论有用性的关系并未起到有效的调节作用。 研究原创性/价值 本论文对现有评论有用性的文献有着补充贡献, 其采用双重历程理论和社会影响理论来构建理论模型。本论文不仅指出评论有用性的影响因素, 而且展示了社会影响如何影响个人对评论有用性的判断。本论文的样本数据庞大, 数据分析夯实, 这对于进一步的实际测量研究有着方法改进方面的贡献。</description><subject>Cognition &amp; reasoning</subject><subject>Customers</subject><subject>Decision making</subject><subject>Heuristic</subject><subject>Information processing</subject><subject>Ratings &amp; rankings</subject><subject>Social networks</subject><subject>Tourism</subject><issn>1757-9880</issn><issn>1757-9899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1LAzEQDaJgqf0B3gKeo5PNZpP1VopapeClnkM2H-2W7W5NdpX-e7O0CIJzmQfz3ny8QeiWwj2lIB_elus1gZxkkAEBEOICTajggpSyLC9_sYRrNItxBylYJguZTVA1j9HFWLcbHFzs9RB02yf4VbtvvHXNwQ9Nmwi434Zu2GxxVW-w1b1-xHbQDTmEzoxl3VocO1PrBtetbwbXGpc0rgvHG3TldRPd7Jyn6OP5ab1YktX7y-tiviKG0bwnmnHDLbWOyUoKywquvQftpcwdFYWx3ENBPa9yLosShGTWeKdp5TMhtS3ZFN2d-qadPod0jNp1Q2jTSJVxDlxSXmSJRU8sE7oYg_PqEOq9DkdFQY1uqtFNBbka3VSjm0kDJ43bu6Ab-6_kzwPYD3CQeBE</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Kwon, Wooseok</creator><creator>Lee, Minwoo</creator><creator>Back, Ki-Joon</creator><creator>Lee, Kyung Young</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210715</creationdate><title>Assessing restaurant review helpfulness through big data: dual-process and social influence theory</title><author>Kwon, Wooseok ; Lee, Minwoo ; Back, Ki-Joon ; Lee, Kyung Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a35c5d1de38b87d365aff0af884e176cd5f061f5b458690783dcfea1bf278ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cognition &amp; reasoning</topic><topic>Customers</topic><topic>Decision making</topic><topic>Heuristic</topic><topic>Information processing</topic><topic>Ratings &amp; rankings</topic><topic>Social networks</topic><topic>Tourism</topic><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Wooseok</creatorcontrib><creatorcontrib>Lee, Minwoo</creatorcontrib><creatorcontrib>Back, Ki-Joon</creatorcontrib><creatorcontrib>Lee, Kyung Young</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of hospitality and tourism technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Wooseok</au><au>Lee, Minwoo</au><au>Back, Ki-Joon</au><au>Lee, Kyung Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing restaurant review helpfulness through big data: dual-process and social influence theory</atitle><jtitle>Journal of hospitality and tourism technology</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>177</spage><epage>195</epage><pages>177-195</pages><issn>1757-9880</issn><eissn>1757-9899</eissn><abstract>Purpose This study aims to uncover how heuristic information cues (HIC) and systematic information cues (SIC) of online reviews influence review helpfulness and examine a moderating role of social influence in the process of assessing review helpfulness. In particular, this study conceptualizes a theoretical framework based on dual-process and social influence theory (SIT) and empirically tests the proposed hypotheses by analyzing a broad set of actual customer review data. Design/methodology/approach For 4,177,377 online reviews posted on Yelp.com from 2004 to 2018, this study used data mining and text analysis to extract independent variables. Zero-inflated negative binomial regression analysis was conducted to test the hypothesized model. Findings The present study demonstrates that both HIC and SIC have a significant relationship with review helpfulness. Normative social influence cue (NSIC) strengthened the relationship between HIC and review helpfulness. However, the moderating effect of NSIC was not valid in the relationship between SIC and review helpfulness. Originality/value This study contributes to the extant research on review helpfulness by providing a conceptual framework underpinned by dual-process theory and SIT. The study not only identifies determinants of review helpfulness but also reveals how social influences can impact individuals’ judgment on review helpfulness. By offering a state-of-the-art analysis with a vast amount of online reviews, this study contributes to the methodological improvement of further empirical research. 研究目的 本论文旨在揭示网络评论的启发性信息源和系统性信息源对于评论有用性的影响, 以及检验社会影响在评论有用性的调节作用。其中, 本论文基于双重历程理论和社会影响理论来构建理论模型, 并且利用实际数据来验证假设, 通过分析一系列实际客户评论数据。 研究设计/方法/途径 本论文样本数据为2004年至2018年Yelp.com上面的4,177,377网络评论。本论文采用数据挖掘和文本分析的方法来提取自变量。本论文采用零膨胀负二项回归模型来验证假设。 研究结果 研究结果表明, 启发性和系统性信息源都对网络评论有用性有着显著作用。规范性社会影响加强了启发性信息源对评论有用性的作用。然而, 规范性社会影响对系统性信息源与评论有用性的关系并未起到有效的调节作用。 研究原创性/价值 本论文对现有评论有用性的文献有着补充贡献, 其采用双重历程理论和社会影响理论来构建理论模型。本论文不仅指出评论有用性的影响因素, 而且展示了社会影响如何影响个人对评论有用性的判断。本论文的样本数据庞大, 数据分析夯实, 这对于进一步的实际测量研究有着方法改进方面的贡献。</abstract><cop>Bingley</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/JHTT-04-2020-0077</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1757-9880
ispartof Journal of hospitality and tourism technology, 2021-07, Vol.12 (2), p.177-195
issn 1757-9880
1757-9899
language eng
recordid cdi_proquest_journals_2550581562
source Emerald Journals; Standard: Emerald eJournal Premier Collection
subjects Cognition & reasoning
Customers
Decision making
Heuristic
Information processing
Ratings & rankings
Social networks
Tourism
title Assessing restaurant review helpfulness through big data: dual-process and social influence theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20restaurant%20review%20helpfulness%20through%20big%20data:%20dual-process%20and%20social%20influence%20theory&rft.jtitle=Journal%20of%20hospitality%20and%20tourism%20technology&rft.au=Kwon,%20Wooseok&rft.date=2021-07-15&rft.volume=12&rft.issue=2&rft.spage=177&rft.epage=195&rft.pages=177-195&rft.issn=1757-9880&rft.eissn=1757-9899&rft_id=info:doi/10.1108/JHTT-04-2020-0077&rft_dat=%3Cproquest_cross%3E2550581562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550581562&rft_id=info:pmid/&rfr_iscdi=true