Universal realizability in low dimension
We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of sp...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2021-06, Vol.619, p.107-136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | |
container_start_page | 107 |
container_title | Linear algebra and its applications |
container_volume | 619 |
creator | Julio, Ana I. Marijuán, Carlos Pisonero, Miriam Soto, Ricardo L. |
description | We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable. |
doi_str_mv | 10.1016/j.laa.2021.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550547832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521000719</els_id><sourcerecordid>2550547832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEd_gLuCGzetL69NmuJKBr9gwI2zDmmSQkqnGZPOyPjrbalrV29zz72PQ8gthZwC5Q9d3iuVIyDNAXOgeEYSKqoio4Lxc5IAYJkVVc0uyVWMHQCUFWBC7reDO9oQVZ8Gq3r3oxrXu_GUuiHt_Xdq3M4O0fnhmly0qo_25u-uyPbl-XP9lm0-Xt_XT5tMF8jGjDNgSlQGBXJea0GhbSlvUNdlDSiMbkteNQzQcA1cmMI0umwZaKh5zQwWK3K39O6D_zrYOMrOH8IwTUpkU3lZiWJO0SWlg48x2Fbug9upcJIU5CxEdnISImchElBOQibmcWHs9P7R2SCjdnbQ1rhg9SiNd__Qv22DZk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550547832</pqid></control><display><type>article</type><title>Universal realizability in low dimension</title><source>Elsevier ScienceDirect Journals</source><creator>Julio, Ana I. ; Marijuán, Carlos ; Pisonero, Miriam ; Soto, Ricardo L.</creator><creatorcontrib>Julio, Ana I. ; Marijuán, Carlos ; Pisonero, Miriam ; Soto, Ricardo L.</creatorcontrib><description>We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.02.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Canonical forms ; Complex numbers ; Eigenvalues ; Inverse eigenvalue problem ; Linear algebra ; Nonnegative matrix ; Realizability ; Spectra ; Universal realizability</subject><ispartof>Linear algebra and its applications, 2021-06, Vol.619, p.107-136</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</citedby><cites>FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</cites><orcidid>0000-0001-6092-7922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379521000719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Julio, Ana I.</creatorcontrib><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Pisonero, Miriam</creatorcontrib><creatorcontrib>Soto, Ricardo L.</creatorcontrib><title>Universal realizability in low dimension</title><title>Linear algebra and its applications</title><description>We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable.</description><subject>Canonical forms</subject><subject>Complex numbers</subject><subject>Eigenvalues</subject><subject>Inverse eigenvalue problem</subject><subject>Linear algebra</subject><subject>Nonnegative matrix</subject><subject>Realizability</subject><subject>Spectra</subject><subject>Universal realizability</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEd_gLuCGzetL69NmuJKBr9gwI2zDmmSQkqnGZPOyPjrbalrV29zz72PQ8gthZwC5Q9d3iuVIyDNAXOgeEYSKqoio4Lxc5IAYJkVVc0uyVWMHQCUFWBC7reDO9oQVZ8Gq3r3oxrXu_GUuiHt_Xdq3M4O0fnhmly0qo_25u-uyPbl-XP9lm0-Xt_XT5tMF8jGjDNgSlQGBXJea0GhbSlvUNdlDSiMbkteNQzQcA1cmMI0umwZaKh5zQwWK3K39O6D_zrYOMrOH8IwTUpkU3lZiWJO0SWlg48x2Fbug9upcJIU5CxEdnISImchElBOQibmcWHs9P7R2SCjdnbQ1rhg9SiNd__Qv22DZk8</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Julio, Ana I.</creator><creator>Marijuán, Carlos</creator><creator>Pisonero, Miriam</creator><creator>Soto, Ricardo L.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6092-7922</orcidid></search><sort><creationdate>20210615</creationdate><title>Universal realizability in low dimension</title><author>Julio, Ana I. ; Marijuán, Carlos ; Pisonero, Miriam ; Soto, Ricardo L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Canonical forms</topic><topic>Complex numbers</topic><topic>Eigenvalues</topic><topic>Inverse eigenvalue problem</topic><topic>Linear algebra</topic><topic>Nonnegative matrix</topic><topic>Realizability</topic><topic>Spectra</topic><topic>Universal realizability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julio, Ana I.</creatorcontrib><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Pisonero, Miriam</creatorcontrib><creatorcontrib>Soto, Ricardo L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julio, Ana I.</au><au>Marijuán, Carlos</au><au>Pisonero, Miriam</au><au>Soto, Ricardo L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal realizability in low dimension</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>619</volume><spage>107</spage><epage>136</epage><pages>107-136</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.02.012</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-6092-7922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2021-06, Vol.619, p.107-136 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2550547832 |
source | Elsevier ScienceDirect Journals |
subjects | Canonical forms Complex numbers Eigenvalues Inverse eigenvalue problem Linear algebra Nonnegative matrix Realizability Spectra Universal realizability |
title | Universal realizability in low dimension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20realizability%20in%20low%20dimension&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Julio,%20Ana%20I.&rft.date=2021-06-15&rft.volume=619&rft.spage=107&rft.epage=136&rft.pages=107-136&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.02.012&rft_dat=%3Cproquest_cross%3E2550547832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550547832&rft_id=info:pmid/&rft_els_id=S0024379521000719&rfr_iscdi=true |