Universal realizability in low dimension

We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-06, Vol.619, p.107-136
Hauptverfasser: Julio, Ana I., Marijuán, Carlos, Pisonero, Miriam, Soto, Ricardo L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 107
container_title Linear algebra and its applications
container_volume 619
creator Julio, Ana I.
Marijuán, Carlos
Pisonero, Miriam
Soto, Ricardo L.
description We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable.
doi_str_mv 10.1016/j.laa.2021.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550547832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521000719</els_id><sourcerecordid>2550547832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEd_gLuCGzetL69NmuJKBr9gwI2zDmmSQkqnGZPOyPjrbalrV29zz72PQ8gthZwC5Q9d3iuVIyDNAXOgeEYSKqoio4Lxc5IAYJkVVc0uyVWMHQCUFWBC7reDO9oQVZ8Gq3r3oxrXu_GUuiHt_Xdq3M4O0fnhmly0qo_25u-uyPbl-XP9lm0-Xt_XT5tMF8jGjDNgSlQGBXJea0GhbSlvUNdlDSiMbkteNQzQcA1cmMI0umwZaKh5zQwWK3K39O6D_zrYOMrOH8IwTUpkU3lZiWJO0SWlg48x2Fbug9upcJIU5CxEdnISImchElBOQibmcWHs9P7R2SCjdnbQ1rhg9SiNd__Qv22DZk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550547832</pqid></control><display><type>article</type><title>Universal realizability in low dimension</title><source>Elsevier ScienceDirect Journals</source><creator>Julio, Ana I. ; Marijuán, Carlos ; Pisonero, Miriam ; Soto, Ricardo L.</creator><creatorcontrib>Julio, Ana I. ; Marijuán, Carlos ; Pisonero, Miriam ; Soto, Ricardo L.</creatorcontrib><description>We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.02.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Canonical forms ; Complex numbers ; Eigenvalues ; Inverse eigenvalue problem ; Linear algebra ; Nonnegative matrix ; Realizability ; Spectra ; Universal realizability</subject><ispartof>Linear algebra and its applications, 2021-06, Vol.619, p.107-136</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</citedby><cites>FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</cites><orcidid>0000-0001-6092-7922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379521000719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Julio, Ana I.</creatorcontrib><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Pisonero, Miriam</creatorcontrib><creatorcontrib>Soto, Ricardo L.</creatorcontrib><title>Universal realizability in low dimension</title><title>Linear algebra and its applications</title><description>We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable.</description><subject>Canonical forms</subject><subject>Complex numbers</subject><subject>Eigenvalues</subject><subject>Inverse eigenvalue problem</subject><subject>Linear algebra</subject><subject>Nonnegative matrix</subject><subject>Realizability</subject><subject>Spectra</subject><subject>Universal realizability</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEd_gLuCGzetL69NmuJKBr9gwI2zDmmSQkqnGZPOyPjrbalrV29zz72PQ8gthZwC5Q9d3iuVIyDNAXOgeEYSKqoio4Lxc5IAYJkVVc0uyVWMHQCUFWBC7reDO9oQVZ8Gq3r3oxrXu_GUuiHt_Xdq3M4O0fnhmly0qo_25u-uyPbl-XP9lm0-Xt_XT5tMF8jGjDNgSlQGBXJea0GhbSlvUNdlDSiMbkteNQzQcA1cmMI0umwZaKh5zQwWK3K39O6D_zrYOMrOH8IwTUpkU3lZiWJO0SWlg48x2Fbug9upcJIU5CxEdnISImchElBOQibmcWHs9P7R2SCjdnbQ1rhg9SiNd__Qv22DZk8</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Julio, Ana I.</creator><creator>Marijuán, Carlos</creator><creator>Pisonero, Miriam</creator><creator>Soto, Ricardo L.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6092-7922</orcidid></search><sort><creationdate>20210615</creationdate><title>Universal realizability in low dimension</title><author>Julio, Ana I. ; Marijuán, Carlos ; Pisonero, Miriam ; Soto, Ricardo L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-6505a87d282669c810ff16b2c949028dcf467b502d6c068d3dbc4f50c09695d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Canonical forms</topic><topic>Complex numbers</topic><topic>Eigenvalues</topic><topic>Inverse eigenvalue problem</topic><topic>Linear algebra</topic><topic>Nonnegative matrix</topic><topic>Realizability</topic><topic>Spectra</topic><topic>Universal realizability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julio, Ana I.</creatorcontrib><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Pisonero, Miriam</creatorcontrib><creatorcontrib>Soto, Ricardo L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julio, Ana I.</au><au>Marijuán, Carlos</au><au>Pisonero, Miriam</au><au>Soto, Ricardo L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal realizability in low dimension</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>619</volume><spage>107</spage><epage>136</epage><pages>107-136</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We say that a list Λ={λ1,…,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n≤5. It is clear that for n≤3 the concepts of universally realizable and realizable are equivalent. The case n=4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half-plane, that is, lists Λ={λ1,…,λn}, where λ1 is the Perron eigenvalue and Re λi≤0, for i=2,…,n, are not necessarily universally realizable.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.02.012</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-6092-7922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-06, Vol.619, p.107-136
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2550547832
source Elsevier ScienceDirect Journals
subjects Canonical forms
Complex numbers
Eigenvalues
Inverse eigenvalue problem
Linear algebra
Nonnegative matrix
Realizability
Spectra
Universal realizability
title Universal realizability in low dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20realizability%20in%20low%20dimension&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Julio,%20Ana%20I.&rft.date=2021-06-15&rft.volume=619&rft.spage=107&rft.epage=136&rft.pages=107-136&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.02.012&rft_dat=%3Cproquest_cross%3E2550547832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550547832&rft_id=info:pmid/&rft_els_id=S0024379521000719&rfr_iscdi=true