Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors
An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invar...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2021-07, Vol.242, p.110863, Article 110863 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110863 |
container_title | Energy and buildings |
container_volume | 242 |
creator | Kampezidou, Styliani I. Ray, Archana Tikayat Duncan, Scott Balchanos, Michael G. Mavris, Dimitri N. |
description | An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation. |
doi_str_mv | 10.1016/j.enbuild.2021.110863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550545565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877882100147X</els_id><sourcerecordid>2550545565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQQh43ppkN5t4Ein-A0EQPYdsdmJTusmaZJUe_O6m1runGWbee8P8EDqnZEEJbS_XC_Dd5Db9ghFGF5QS2dYHaEalYFVLhTxEM1ILWQkh5TE6SWlNCGm5oDP0_QJ6U2U3AA7GTKP2Zot7yGCyCx5_ubzC42qbnEmV8zbEAXo86pwh-iqCCe_e_SoHbVbOQ8KdTkVSJhs3uFza5TPD2vc4wzBC1HmKgBP4FGI6RUdWbxKc_dU5eru7fV0-VE_P94_Lm6fK1LLJlSWUNRqsFI3pmK2vmOWGaCOBS84M8LpumpaTpuuE7olg0BPNdVmUibW6nqOLfe4Yw8cEKat1mKIvJxXjnPCG85YXFd-rTAwpRbBqjG7QcasoUTvSaq3-SKsdabUnXXzXex-UFz4dRJWMA2-gd4VQVn1w_yT8AAXdjPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550545565</pqid></control><display><type>article</type><title>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kampezidou, Styliani I. ; Ray, Archana Tikayat ; Duncan, Scott ; Balchanos, Michael G. ; Mavris, Dimitri N.</creator><creatorcontrib>Kampezidou, Styliani I. ; Ray, Archana Tikayat ; Duncan, Scott ; Balchanos, Michael G. ; Mavris, Dimitri N.</creatorcontrib><description>An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2021.110863</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air quality ; Carbon dioxide ; Energy efficiency ; Feature extraction ; HVAC ; Occupancy ; Parameterization ; Pattern recognition ; Physics ; Physics-informed pattern-recognition machines (PI-PRM) ; Quality control ; Real time ; Real-time occupancy detection ; Savitzky-Golay (S-G) filter ; Sensors ; Temperature sensors ; Transformations</subject><ispartof>Energy and buildings, 2021-07, Vol.242, p.110863, Article 110863</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</citedby><cites>FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2021.110863$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kampezidou, Styliani I.</creatorcontrib><creatorcontrib>Ray, Archana Tikayat</creatorcontrib><creatorcontrib>Duncan, Scott</creatorcontrib><creatorcontrib>Balchanos, Michael G.</creatorcontrib><creatorcontrib>Mavris, Dimitri N.</creatorcontrib><title>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</title><title>Energy and buildings</title><description>An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation.</description><subject>Air quality</subject><subject>Carbon dioxide</subject><subject>Energy efficiency</subject><subject>Feature extraction</subject><subject>HVAC</subject><subject>Occupancy</subject><subject>Parameterization</subject><subject>Pattern recognition</subject><subject>Physics</subject><subject>Physics-informed pattern-recognition machines (PI-PRM)</subject><subject>Quality control</subject><subject>Real time</subject><subject>Real-time occupancy detection</subject><subject>Savitzky-Golay (S-G) filter</subject><subject>Sensors</subject><subject>Temperature sensors</subject><subject>Transformations</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQQh43ppkN5t4Ein-A0EQPYdsdmJTusmaZJUe_O6m1runGWbee8P8EDqnZEEJbS_XC_Dd5Db9ghFGF5QS2dYHaEalYFVLhTxEM1ILWQkh5TE6SWlNCGm5oDP0_QJ6U2U3AA7GTKP2Zot7yGCyCx5_ubzC42qbnEmV8zbEAXo86pwh-iqCCe_e_SoHbVbOQ8KdTkVSJhs3uFza5TPD2vc4wzBC1HmKgBP4FGI6RUdWbxKc_dU5eru7fV0-VE_P94_Lm6fK1LLJlSWUNRqsFI3pmK2vmOWGaCOBS84M8LpumpaTpuuE7olg0BPNdVmUibW6nqOLfe4Yw8cEKat1mKIvJxXjnPCG85YXFd-rTAwpRbBqjG7QcasoUTvSaq3-SKsdabUnXXzXex-UFz4dRJWMA2-gd4VQVn1w_yT8AAXdjPo</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kampezidou, Styliani I.</creator><creator>Ray, Archana Tikayat</creator><creator>Duncan, Scott</creator><creator>Balchanos, Michael G.</creator><creator>Mavris, Dimitri N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20210701</creationdate><title>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</title><author>Kampezidou, Styliani I. ; Ray, Archana Tikayat ; Duncan, Scott ; Balchanos, Michael G. ; Mavris, Dimitri N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air quality</topic><topic>Carbon dioxide</topic><topic>Energy efficiency</topic><topic>Feature extraction</topic><topic>HVAC</topic><topic>Occupancy</topic><topic>Parameterization</topic><topic>Pattern recognition</topic><topic>Physics</topic><topic>Physics-informed pattern-recognition machines (PI-PRM)</topic><topic>Quality control</topic><topic>Real time</topic><topic>Real-time occupancy detection</topic><topic>Savitzky-Golay (S-G) filter</topic><topic>Sensors</topic><topic>Temperature sensors</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampezidou, Styliani I.</creatorcontrib><creatorcontrib>Ray, Archana Tikayat</creatorcontrib><creatorcontrib>Duncan, Scott</creatorcontrib><creatorcontrib>Balchanos, Michael G.</creatorcontrib><creatorcontrib>Mavris, Dimitri N.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampezidou, Styliani I.</au><au>Ray, Archana Tikayat</au><au>Duncan, Scott</au><au>Balchanos, Michael G.</au><au>Mavris, Dimitri N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</atitle><jtitle>Energy and buildings</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>242</volume><spage>110863</spage><pages>110863-</pages><artnum>110863</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2021.110863</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2021-07, Vol.242, p.110863, Article 110863 |
issn | 0378-7788 1872-6178 |
language | eng |
recordid | cdi_proquest_journals_2550545565 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Air quality Carbon dioxide Energy efficiency Feature extraction HVAC Occupancy Parameterization Pattern recognition Physics Physics-informed pattern-recognition machines (PI-PRM) Quality control Real time Real-time occupancy detection Savitzky-Golay (S-G) filter Sensors Temperature sensors Transformations |
title | Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20occupancy%20detection%20with%20physics-informed%20pattern-recognition%20machines%20based%20on%20limited%20CO2%20and%20temperature%20sensors&rft.jtitle=Energy%20and%20buildings&rft.au=Kampezidou,%20Styliani%20I.&rft.date=2021-07-01&rft.volume=242&rft.spage=110863&rft.pages=110863-&rft.artnum=110863&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2021.110863&rft_dat=%3Cproquest_cross%3E2550545565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550545565&rft_id=info:pmid/&rft_els_id=S037877882100147X&rfr_iscdi=true |