Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors

An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2021-07, Vol.242, p.110863, Article 110863
Hauptverfasser: Kampezidou, Styliani I., Ray, Archana Tikayat, Duncan, Scott, Balchanos, Michael G., Mavris, Dimitri N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110863
container_title Energy and buildings
container_volume 242
creator Kampezidou, Styliani I.
Ray, Archana Tikayat
Duncan, Scott
Balchanos, Michael G.
Mavris, Dimitri N.
description An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation.
doi_str_mv 10.1016/j.enbuild.2021.110863
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550545565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877882100147X</els_id><sourcerecordid>2550545565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQQh43ppkN5t4Ein-A0EQPYdsdmJTusmaZJUe_O6m1runGWbee8P8EDqnZEEJbS_XC_Dd5Db9ghFGF5QS2dYHaEalYFVLhTxEM1ILWQkh5TE6SWlNCGm5oDP0_QJ6U2U3AA7GTKP2Zot7yGCyCx5_ubzC42qbnEmV8zbEAXo86pwh-iqCCe_e_SoHbVbOQ8KdTkVSJhs3uFza5TPD2vc4wzBC1HmKgBP4FGI6RUdWbxKc_dU5eru7fV0-VE_P94_Lm6fK1LLJlSWUNRqsFI3pmK2vmOWGaCOBS84M8LpumpaTpuuE7olg0BPNdVmUibW6nqOLfe4Yw8cEKat1mKIvJxXjnPCG85YXFd-rTAwpRbBqjG7QcasoUTvSaq3-SKsdabUnXXzXex-UFz4dRJWMA2-gd4VQVn1w_yT8AAXdjPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550545565</pqid></control><display><type>article</type><title>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kampezidou, Styliani I. ; Ray, Archana Tikayat ; Duncan, Scott ; Balchanos, Michael G. ; Mavris, Dimitri N.</creator><creatorcontrib>Kampezidou, Styliani I. ; Ray, Archana Tikayat ; Duncan, Scott ; Balchanos, Michael G. ; Mavris, Dimitri N.</creatorcontrib><description>An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2021.110863</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air quality ; Carbon dioxide ; Energy efficiency ; Feature extraction ; HVAC ; Occupancy ; Parameterization ; Pattern recognition ; Physics ; Physics-informed pattern-recognition machines (PI-PRM) ; Quality control ; Real time ; Real-time occupancy detection ; Savitzky-Golay (S-G) filter ; Sensors ; Temperature sensors ; Transformations</subject><ispartof>Energy and buildings, 2021-07, Vol.242, p.110863, Article 110863</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</citedby><cites>FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2021.110863$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kampezidou, Styliani I.</creatorcontrib><creatorcontrib>Ray, Archana Tikayat</creatorcontrib><creatorcontrib>Duncan, Scott</creatorcontrib><creatorcontrib>Balchanos, Michael G.</creatorcontrib><creatorcontrib>Mavris, Dimitri N.</creatorcontrib><title>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</title><title>Energy and buildings</title><description>An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation.</description><subject>Air quality</subject><subject>Carbon dioxide</subject><subject>Energy efficiency</subject><subject>Feature extraction</subject><subject>HVAC</subject><subject>Occupancy</subject><subject>Parameterization</subject><subject>Pattern recognition</subject><subject>Physics</subject><subject>Physics-informed pattern-recognition machines (PI-PRM)</subject><subject>Quality control</subject><subject>Real time</subject><subject>Real-time occupancy detection</subject><subject>Savitzky-Golay (S-G) filter</subject><subject>Sensors</subject><subject>Temperature sensors</subject><subject>Transformations</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQQh43ppkN5t4Ein-A0EQPYdsdmJTusmaZJUe_O6m1runGWbee8P8EDqnZEEJbS_XC_Dd5Db9ghFGF5QS2dYHaEalYFVLhTxEM1ILWQkh5TE6SWlNCGm5oDP0_QJ6U2U3AA7GTKP2Zot7yGCyCx5_ubzC42qbnEmV8zbEAXo86pwh-iqCCe_e_SoHbVbOQ8KdTkVSJhs3uFza5TPD2vc4wzBC1HmKgBP4FGI6RUdWbxKc_dU5eru7fV0-VE_P94_Lm6fK1LLJlSWUNRqsFI3pmK2vmOWGaCOBS84M8LpumpaTpuuE7olg0BPNdVmUibW6nqOLfe4Yw8cEKat1mKIvJxXjnPCG85YXFd-rTAwpRbBqjG7QcasoUTvSaq3-SKsdabUnXXzXex-UFz4dRJWMA2-gd4VQVn1w_yT8AAXdjPo</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kampezidou, Styliani I.</creator><creator>Ray, Archana Tikayat</creator><creator>Duncan, Scott</creator><creator>Balchanos, Michael G.</creator><creator>Mavris, Dimitri N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20210701</creationdate><title>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</title><author>Kampezidou, Styliani I. ; Ray, Archana Tikayat ; Duncan, Scott ; Balchanos, Michael G. ; Mavris, Dimitri N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-f0124aef874cb2f392f5c0ac8e5852ce533446504bb7ad072ed0a5ace54bbffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air quality</topic><topic>Carbon dioxide</topic><topic>Energy efficiency</topic><topic>Feature extraction</topic><topic>HVAC</topic><topic>Occupancy</topic><topic>Parameterization</topic><topic>Pattern recognition</topic><topic>Physics</topic><topic>Physics-informed pattern-recognition machines (PI-PRM)</topic><topic>Quality control</topic><topic>Real time</topic><topic>Real-time occupancy detection</topic><topic>Savitzky-Golay (S-G) filter</topic><topic>Sensors</topic><topic>Temperature sensors</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampezidou, Styliani I.</creatorcontrib><creatorcontrib>Ray, Archana Tikayat</creatorcontrib><creatorcontrib>Duncan, Scott</creatorcontrib><creatorcontrib>Balchanos, Michael G.</creatorcontrib><creatorcontrib>Mavris, Dimitri N.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampezidou, Styliani I.</au><au>Ray, Archana Tikayat</au><au>Duncan, Scott</au><au>Balchanos, Michael G.</au><au>Mavris, Dimitri N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors</atitle><jtitle>Energy and buildings</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>242</volume><spage>110863</spage><pages>110863-</pages><artnum>110863</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>An indoor occupancy estimator is proposed for the purpose of identifying the room’s binary occupancy state based on limited carbon dioxide (CO2) and temperature measurements from only two available sensors. The proposed approach includes a physics-informed pattern-recognition machine (PI-PRM). Invariant features, including CO2 level, CO2 rate of change and HVAC state, are extracted by the first PI-PRM submodule based on Savitzky-Golay (S-G) filtering and other physics-informed transformations. Optimal parameterization of the feature extraction transformations is also provided based on Stein’s unbiased risk estimator (SURE) and a physics-informed transformation for the HVAC operation mode. The proposed PI-PRM method is available for real-time estimation within few minutes from an occupancy change. Experimental results in an average size room, demonstrate the efficacy of our method with an accuracy of 97%. Among other applications, the proposed work can potentially be leveraged in energy efficiency, air quality improvement and emergency evacuation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2021.110863</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2021-07, Vol.242, p.110863, Article 110863
issn 0378-7788
1872-6178
language eng
recordid cdi_proquest_journals_2550545565
source Elsevier ScienceDirect Journals Complete
subjects Air quality
Carbon dioxide
Energy efficiency
Feature extraction
HVAC
Occupancy
Parameterization
Pattern recognition
Physics
Physics-informed pattern-recognition machines (PI-PRM)
Quality control
Real time
Real-time occupancy detection
Savitzky-Golay (S-G) filter
Sensors
Temperature sensors
Transformations
title Real-time occupancy detection with physics-informed pattern-recognition machines based on limited CO2 and temperature sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20occupancy%20detection%20with%20physics-informed%20pattern-recognition%20machines%20based%20on%20limited%20CO2%20and%20temperature%20sensors&rft.jtitle=Energy%20and%20buildings&rft.au=Kampezidou,%20Styliani%20I.&rft.date=2021-07-01&rft.volume=242&rft.spage=110863&rft.pages=110863-&rft.artnum=110863&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2021.110863&rft_dat=%3Cproquest_cross%3E2550545565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550545565&rft_id=info:pmid/&rft_els_id=S037877882100147X&rfr_iscdi=true