A microwave sensor for detecting impurity freeze out in liquefied natural gas production
Direct measurements of impurity freeze-out conditions in real time are needed to improve the reliability of liquefied natural gas (LNG) production. Benzene and carbon dioxide are two impurities in the feed mixtures processed by LNG plants that can freeze, deposit and block cryogenic heat exchangers,...
Gespeichert in:
Veröffentlicht in: | Fuel processing technology 2021-08, Vol.219, p.106878, Article 106878 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106878 |
container_title | Fuel processing technology |
container_volume | 219 |
creator | Hopkins, Matthew G. Siahvashi, Arman Yang, Xiaoxian Richter, Markus Stanwix, Paul L. May, Eric F. |
description | Direct measurements of impurity freeze-out conditions in real time are needed to improve the reliability of liquefied natural gas (LNG) production. Benzene and carbon dioxide are two impurities in the feed mixtures processed by LNG plants that can freeze, deposit and block cryogenic heat exchangers, even at trace concentrations. Existing technologies for monitoring the risk of impurity freeze out, such as compositional analysis, are inherently indirect and of limited resolution and accuracy. Here, we present a window-free, microwave sensor capable of measuring the freeze-out conditions of low-concentration impurities in high-pressure natural gas mixtures at cryogenic temperatures. The sensor is designed so that solids freezing out from the high-pressure LNG mixture are located in a region of high electric field strength, causing resonance frequency shifts of order 0.03 MHz per nanolitre of solid benzene. Finite-element models of the sensor performance were validated by measuring the freeze-out of benzene and carbon dioxide solutes at (50 to 100) parts-per-million in liquid methane at pressures from (7 to 9.5) MPa and temperatures from (90 to 150) K. The operational use of such a sensor has significant potential for improving the reliability of LNG production and identifying blockage remediation options that avoid complete plant shut downs.
•Development of a window-free microwave sensor for detecting solid freeze out in LNG.•Microwave cavity optimized to detect impurities at part-per-million concentrations.•Demonstrated detection of solid CO2 and benzene freeze out from methane at 9.5 MPa.•Detection sensitivity estimated at approximately 6 nanolitres of solid in 15 mL. |
doi_str_mv | 10.1016/j.fuproc.2021.106878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550544154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382021001570</els_id><sourcerecordid>2550544154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fa86b3f7efd831c52fb45470dd58308be7012d97bddbde202596cf67dc00d6203</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62TpmmyF2FZ_AcLXhS8hTaZLCm77Zq0K-unN0s9exgGhnkz7_0IuWWQM2DVfZu7cR96kxdQsDSqlFRnZMaU5JlkSp2TGXCpMq4KuCRXMbYAIMRCzsjnku68Cf13fUAasYt9oC6VxQHN4LsN9bv9GPxwpC4g_iDtx4H6jm7914jOo6VdPYyh3tJNHWlyYcek67trcuHqbcSbvz4nH0-P76uXbP32_LparjPDeTlkrlZVw51EZxVnRhSuKUUpwVqhOKgGJbDCLmRjbWMx5ROLyrhKWgNgqwL4nNxNd9Pr5CgOuu3H0KWXuhACRFkyUaatctpKUWMM6PQ--F0djpqBPjHUrZ4Y6hNDPTFMsodJhinBwWPQ0XjsDFofEh5te___gV_U632k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550544154</pqid></control><display><type>article</type><title>A microwave sensor for detecting impurity freeze out in liquefied natural gas production</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hopkins, Matthew G. ; Siahvashi, Arman ; Yang, Xiaoxian ; Richter, Markus ; Stanwix, Paul L. ; May, Eric F.</creator><creatorcontrib>Hopkins, Matthew G. ; Siahvashi, Arman ; Yang, Xiaoxian ; Richter, Markus ; Stanwix, Paul L. ; May, Eric F.</creatorcontrib><description>Direct measurements of impurity freeze-out conditions in real time are needed to improve the reliability of liquefied natural gas (LNG) production. Benzene and carbon dioxide are two impurities in the feed mixtures processed by LNG plants that can freeze, deposit and block cryogenic heat exchangers, even at trace concentrations. Existing technologies for monitoring the risk of impurity freeze out, such as compositional analysis, are inherently indirect and of limited resolution and accuracy. Here, we present a window-free, microwave sensor capable of measuring the freeze-out conditions of low-concentration impurities in high-pressure natural gas mixtures at cryogenic temperatures. The sensor is designed so that solids freezing out from the high-pressure LNG mixture are located in a region of high electric field strength, causing resonance frequency shifts of order 0.03 MHz per nanolitre of solid benzene. Finite-element models of the sensor performance were validated by measuring the freeze-out of benzene and carbon dioxide solutes at (50 to 100) parts-per-million in liquid methane at pressures from (7 to 9.5) MPa and temperatures from (90 to 150) K. The operational use of such a sensor has significant potential for improving the reliability of LNG production and identifying blockage remediation options that avoid complete plant shut downs.
•Development of a window-free microwave sensor for detecting solid freeze out in LNG.•Microwave cavity optimized to detect impurities at part-per-million concentrations.•Demonstrated detection of solid CO2 and benzene freeze out from methane at 9.5 MPa.•Detection sensitivity estimated at approximately 6 nanolitres of solid in 15 mL.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2021.106878</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Benzene ; Carbon dioxide ; Cryogenic temperature ; Electric field strength ; Finite element method ; Freezing ; Gas mixtures ; Heat exchangers ; Hydrocarbons ; Impurities ; Liquefied natural gas ; Microwave sensors ; Natural gas ; Plant shutdowns ; Reliability aspects ; Sensors</subject><ispartof>Fuel processing technology, 2021-08, Vol.219, p.106878, Article 106878</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-fa86b3f7efd831c52fb45470dd58308be7012d97bddbde202596cf67dc00d6203</citedby><cites>FETCH-LOGICAL-c334t-fa86b3f7efd831c52fb45470dd58308be7012d97bddbde202596cf67dc00d6203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuproc.2021.106878$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Hopkins, Matthew G.</creatorcontrib><creatorcontrib>Siahvashi, Arman</creatorcontrib><creatorcontrib>Yang, Xiaoxian</creatorcontrib><creatorcontrib>Richter, Markus</creatorcontrib><creatorcontrib>Stanwix, Paul L.</creatorcontrib><creatorcontrib>May, Eric F.</creatorcontrib><title>A microwave sensor for detecting impurity freeze out in liquefied natural gas production</title><title>Fuel processing technology</title><description>Direct measurements of impurity freeze-out conditions in real time are needed to improve the reliability of liquefied natural gas (LNG) production. Benzene and carbon dioxide are two impurities in the feed mixtures processed by LNG plants that can freeze, deposit and block cryogenic heat exchangers, even at trace concentrations. Existing technologies for monitoring the risk of impurity freeze out, such as compositional analysis, are inherently indirect and of limited resolution and accuracy. Here, we present a window-free, microwave sensor capable of measuring the freeze-out conditions of low-concentration impurities in high-pressure natural gas mixtures at cryogenic temperatures. The sensor is designed so that solids freezing out from the high-pressure LNG mixture are located in a region of high electric field strength, causing resonance frequency shifts of order 0.03 MHz per nanolitre of solid benzene. Finite-element models of the sensor performance were validated by measuring the freeze-out of benzene and carbon dioxide solutes at (50 to 100) parts-per-million in liquid methane at pressures from (7 to 9.5) MPa and temperatures from (90 to 150) K. The operational use of such a sensor has significant potential for improving the reliability of LNG production and identifying blockage remediation options that avoid complete plant shut downs.
•Development of a window-free microwave sensor for detecting solid freeze out in LNG.•Microwave cavity optimized to detect impurities at part-per-million concentrations.•Demonstrated detection of solid CO2 and benzene freeze out from methane at 9.5 MPa.•Detection sensitivity estimated at approximately 6 nanolitres of solid in 15 mL.</description><subject>Benzene</subject><subject>Carbon dioxide</subject><subject>Cryogenic temperature</subject><subject>Electric field strength</subject><subject>Finite element method</subject><subject>Freezing</subject><subject>Gas mixtures</subject><subject>Heat exchangers</subject><subject>Hydrocarbons</subject><subject>Impurities</subject><subject>Liquefied natural gas</subject><subject>Microwave sensors</subject><subject>Natural gas</subject><subject>Plant shutdowns</subject><subject>Reliability aspects</subject><subject>Sensors</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62TpmmyF2FZ_AcLXhS8hTaZLCm77Zq0K-unN0s9exgGhnkz7_0IuWWQM2DVfZu7cR96kxdQsDSqlFRnZMaU5JlkSp2TGXCpMq4KuCRXMbYAIMRCzsjnku68Cf13fUAasYt9oC6VxQHN4LsN9bv9GPxwpC4g_iDtx4H6jm7914jOo6VdPYyh3tJNHWlyYcek67trcuHqbcSbvz4nH0-P76uXbP32_LparjPDeTlkrlZVw51EZxVnRhSuKUUpwVqhOKgGJbDCLmRjbWMx5ROLyrhKWgNgqwL4nNxNd9Pr5CgOuu3H0KWXuhACRFkyUaatctpKUWMM6PQ--F0djpqBPjHUrZ4Y6hNDPTFMsodJhinBwWPQ0XjsDFofEh5te___gV_U632k</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Hopkins, Matthew G.</creator><creator>Siahvashi, Arman</creator><creator>Yang, Xiaoxian</creator><creator>Richter, Markus</creator><creator>Stanwix, Paul L.</creator><creator>May, Eric F.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202108</creationdate><title>A microwave sensor for detecting impurity freeze out in liquefied natural gas production</title><author>Hopkins, Matthew G. ; Siahvashi, Arman ; Yang, Xiaoxian ; Richter, Markus ; Stanwix, Paul L. ; May, Eric F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fa86b3f7efd831c52fb45470dd58308be7012d97bddbde202596cf67dc00d6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benzene</topic><topic>Carbon dioxide</topic><topic>Cryogenic temperature</topic><topic>Electric field strength</topic><topic>Finite element method</topic><topic>Freezing</topic><topic>Gas mixtures</topic><topic>Heat exchangers</topic><topic>Hydrocarbons</topic><topic>Impurities</topic><topic>Liquefied natural gas</topic><topic>Microwave sensors</topic><topic>Natural gas</topic><topic>Plant shutdowns</topic><topic>Reliability aspects</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hopkins, Matthew G.</creatorcontrib><creatorcontrib>Siahvashi, Arman</creatorcontrib><creatorcontrib>Yang, Xiaoxian</creatorcontrib><creatorcontrib>Richter, Markus</creatorcontrib><creatorcontrib>Stanwix, Paul L.</creatorcontrib><creatorcontrib>May, Eric F.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopkins, Matthew G.</au><au>Siahvashi, Arman</au><au>Yang, Xiaoxian</au><au>Richter, Markus</au><au>Stanwix, Paul L.</au><au>May, Eric F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microwave sensor for detecting impurity freeze out in liquefied natural gas production</atitle><jtitle>Fuel processing technology</jtitle><date>2021-08</date><risdate>2021</risdate><volume>219</volume><spage>106878</spage><pages>106878-</pages><artnum>106878</artnum><issn>0378-3820</issn><eissn>1873-7188</eissn><abstract>Direct measurements of impurity freeze-out conditions in real time are needed to improve the reliability of liquefied natural gas (LNG) production. Benzene and carbon dioxide are two impurities in the feed mixtures processed by LNG plants that can freeze, deposit and block cryogenic heat exchangers, even at trace concentrations. Existing technologies for monitoring the risk of impurity freeze out, such as compositional analysis, are inherently indirect and of limited resolution and accuracy. Here, we present a window-free, microwave sensor capable of measuring the freeze-out conditions of low-concentration impurities in high-pressure natural gas mixtures at cryogenic temperatures. The sensor is designed so that solids freezing out from the high-pressure LNG mixture are located in a region of high electric field strength, causing resonance frequency shifts of order 0.03 MHz per nanolitre of solid benzene. Finite-element models of the sensor performance were validated by measuring the freeze-out of benzene and carbon dioxide solutes at (50 to 100) parts-per-million in liquid methane at pressures from (7 to 9.5) MPa and temperatures from (90 to 150) K. The operational use of such a sensor has significant potential for improving the reliability of LNG production and identifying blockage remediation options that avoid complete plant shut downs.
•Development of a window-free microwave sensor for detecting solid freeze out in LNG.•Microwave cavity optimized to detect impurities at part-per-million concentrations.•Demonstrated detection of solid CO2 and benzene freeze out from methane at 9.5 MPa.•Detection sensitivity estimated at approximately 6 nanolitres of solid in 15 mL.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2021.106878</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3820 |
ispartof | Fuel processing technology, 2021-08, Vol.219, p.106878, Article 106878 |
issn | 0378-3820 1873-7188 |
language | eng |
recordid | cdi_proquest_journals_2550544154 |
source | Access via ScienceDirect (Elsevier) |
subjects | Benzene Carbon dioxide Cryogenic temperature Electric field strength Finite element method Freezing Gas mixtures Heat exchangers Hydrocarbons Impurities Liquefied natural gas Microwave sensors Natural gas Plant shutdowns Reliability aspects Sensors |
title | A microwave sensor for detecting impurity freeze out in liquefied natural gas production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microwave%20sensor%20for%20detecting%20impurity%20freeze%20out%20in%20liquefied%20natural%20gas%20production&rft.jtitle=Fuel%20processing%20technology&rft.au=Hopkins,%20Matthew%20G.&rft.date=2021-08&rft.volume=219&rft.spage=106878&rft.pages=106878-&rft.artnum=106878&rft.issn=0378-3820&rft.eissn=1873-7188&rft_id=info:doi/10.1016/j.fuproc.2021.106878&rft_dat=%3Cproquest_cross%3E2550544154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550544154&rft_id=info:pmid/&rft_els_id=S0378382021001570&rfr_iscdi=true |