Study on Optimal Allocation of Water Resources Based on Surrogate Model of Groundwater Numerical Simulation

The characteristics of groundwater systems are highly complex. It will take substantial computational resources and running time to optimize a groundwater numerical simulation model. In this study, in order to realize the coupling of simulation and optimization models, the improved backpropagation (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2019-04, Vol.11 (4), p.831
Hauptverfasser: Wang, Yufeng, Shao, Jingli, Zhang, Qiulan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 831
container_title Water (Basel)
container_volume 11
creator Wang, Yufeng
Shao, Jingli
Zhang, Qiulan
description The characteristics of groundwater systems are highly complex. It will take substantial computational resources and running time to optimize a groundwater numerical simulation model. In this study, in order to realize the coupling of simulation and optimization models, the improved backpropagation (BP) neural network was used as a surrogate model of a groundwater numerical simulation; the improved BP neural network was trained with the groundwater level drawdown–pumping volume data output of the simulation model. The method was applied to the water resource optimal allocation in the near future of Wenshang County, Shandong Provence of China. The results show that the water level drawdown output of the improved BP neural network model fits the results of the simulation model well, showing that the improved BP neural network can effectively be the surrogate of a groundwater numerical simulation to be embedded in an optimization model. The improved simulation and optimization technique can make full use of water resources in the whole area. Under an assurance rate of 50%, both water shortage and water shortage rate reduced to zero in the whole area. Under an assurance rate of 75%, water shortage and water shortage rate reduced to about 10% of the conventional scheme, which dramatically improves the comprehensive benefit of the whole area.
doi_str_mv 10.3390/w11040831
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2550495201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A809735802</galeid><sourcerecordid>A809735802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6c076ef6890d593e074e339ee2265e1d8b746eebc3541957940968260b7b235a3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUH_iASJw4t61fiHEsFBalQiYI4Ro6zqVKSuNiJqv49bosQ68OuxjNj7xByTWHCeQp3O0pBgOL0jAwYJHwshKDn_-ZLMvJ-A6FEqpSEAfladX2xj2wbLbdd1eg6mta1NbqrAmTL6FN36KI39LZ3Bn10rz0WB_qqd86uw230YgusD9y5s31b7I6K175BV5ngt6qavj76XZGLUtceR799SD4eH95nT-PFcv48my7GhnPajWMDSYxlrFIoZMoREoFhPUTGYom0UHkiYsTccCloKpNUQBorFkOe5IxLzYfk5uS7dfa7R99lm_D7NjyZMSnD6pIBDazJibXWNWZVW9rOaRNOgU1lbItlFfCpgjThUgELgtuTwDjrvcMy27qQmNtnFLJD_tlf_vwHtGh2Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550495201</pqid></control><display><type>article</type><title>Study on Optimal Allocation of Water Resources Based on Surrogate Model of Groundwater Numerical Simulation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Yufeng ; Shao, Jingli ; Zhang, Qiulan</creator><creatorcontrib>Wang, Yufeng ; Shao, Jingli ; Zhang, Qiulan</creatorcontrib><description>The characteristics of groundwater systems are highly complex. It will take substantial computational resources and running time to optimize a groundwater numerical simulation model. In this study, in order to realize the coupling of simulation and optimization models, the improved backpropagation (BP) neural network was used as a surrogate model of a groundwater numerical simulation; the improved BP neural network was trained with the groundwater level drawdown–pumping volume data output of the simulation model. The method was applied to the water resource optimal allocation in the near future of Wenshang County, Shandong Provence of China. The results show that the water level drawdown output of the improved BP neural network model fits the results of the simulation model well, showing that the improved BP neural network can effectively be the surrogate of a groundwater numerical simulation to be embedded in an optimization model. The improved simulation and optimization technique can make full use of water resources in the whole area. Under an assurance rate of 50%, both water shortage and water shortage rate reduced to zero in the whole area. Under an assurance rate of 75%, water shortage and water shortage rate reduced to about 10% of the conventional scheme, which dramatically improves the comprehensive benefit of the whole area.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w11040831</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Aquifers ; Artificial intelligence ; Assurance ; Back propagation networks ; China ; Computer applications ; Computer simulation ; Drawdown ; Environmental aspects ; Groundwater ; Groundwater levels ; Hydrology ; Mathematical models ; Mathematical optimization ; Mathematical programming ; Measurement ; Methods ; Neural networks ; Numerical analysis ; Optimization ; Optimization techniques ; Resource allocation ; Simulation ; Software ; Sustainable development ; Water levels ; Water resources ; Water shortages ; Water supply ; Water table ; Water use ; Water, Underground</subject><ispartof>Water (Basel), 2019-04, Vol.11 (4), p.831</ispartof><rights>COPYRIGHT 2019 MDPI AG</rights><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-6c076ef6890d593e074e339ee2265e1d8b746eebc3541957940968260b7b235a3</citedby><cites>FETCH-LOGICAL-c331t-6c076ef6890d593e074e339ee2265e1d8b746eebc3541957940968260b7b235a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Shao, Jingli</creatorcontrib><creatorcontrib>Zhang, Qiulan</creatorcontrib><title>Study on Optimal Allocation of Water Resources Based on Surrogate Model of Groundwater Numerical Simulation</title><title>Water (Basel)</title><description>The characteristics of groundwater systems are highly complex. It will take substantial computational resources and running time to optimize a groundwater numerical simulation model. In this study, in order to realize the coupling of simulation and optimization models, the improved backpropagation (BP) neural network was used as a surrogate model of a groundwater numerical simulation; the improved BP neural network was trained with the groundwater level drawdown–pumping volume data output of the simulation model. The method was applied to the water resource optimal allocation in the near future of Wenshang County, Shandong Provence of China. The results show that the water level drawdown output of the improved BP neural network model fits the results of the simulation model well, showing that the improved BP neural network can effectively be the surrogate of a groundwater numerical simulation to be embedded in an optimization model. The improved simulation and optimization technique can make full use of water resources in the whole area. Under an assurance rate of 50%, both water shortage and water shortage rate reduced to zero in the whole area. Under an assurance rate of 75%, water shortage and water shortage rate reduced to about 10% of the conventional scheme, which dramatically improves the comprehensive benefit of the whole area.</description><subject>Approximation</subject><subject>Aquifers</subject><subject>Artificial intelligence</subject><subject>Assurance</subject><subject>Back propagation networks</subject><subject>China</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Drawdown</subject><subject>Environmental aspects</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Mathematical programming</subject><subject>Measurement</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Resource allocation</subject><subject>Simulation</subject><subject>Software</subject><subject>Sustainable development</subject><subject>Water levels</subject><subject>Water resources</subject><subject>Water shortages</subject><subject>Water supply</subject><subject>Water table</subject><subject>Water use</subject><subject>Water, Underground</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUMtOwzAQtBBIVKUH_iASJw4t61fiHEsFBalQiYI4Ro6zqVKSuNiJqv49bosQ68OuxjNj7xByTWHCeQp3O0pBgOL0jAwYJHwshKDn_-ZLMvJ-A6FEqpSEAfladX2xj2wbLbdd1eg6mta1NbqrAmTL6FN36KI39LZ3Bn10rz0WB_qqd86uw230YgusD9y5s31b7I6K175BV5ngt6qavj76XZGLUtceR799SD4eH95nT-PFcv48my7GhnPajWMDSYxlrFIoZMoREoFhPUTGYom0UHkiYsTccCloKpNUQBorFkOe5IxLzYfk5uS7dfa7R99lm_D7NjyZMSnD6pIBDazJibXWNWZVW9rOaRNOgU1lbItlFfCpgjThUgELgtuTwDjrvcMy27qQmNtnFLJD_tlf_vwHtGh2Iw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wang, Yufeng</creator><creator>Shao, Jingli</creator><creator>Zhang, Qiulan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190401</creationdate><title>Study on Optimal Allocation of Water Resources Based on Surrogate Model of Groundwater Numerical Simulation</title><author>Wang, Yufeng ; Shao, Jingli ; Zhang, Qiulan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6c076ef6890d593e074e339ee2265e1d8b746eebc3541957940968260b7b235a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Aquifers</topic><topic>Artificial intelligence</topic><topic>Assurance</topic><topic>Back propagation networks</topic><topic>China</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Drawdown</topic><topic>Environmental aspects</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Mathematical programming</topic><topic>Measurement</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Resource allocation</topic><topic>Simulation</topic><topic>Software</topic><topic>Sustainable development</topic><topic>Water levels</topic><topic>Water resources</topic><topic>Water shortages</topic><topic>Water supply</topic><topic>Water table</topic><topic>Water use</topic><topic>Water, Underground</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Shao, Jingli</creatorcontrib><creatorcontrib>Zhang, Qiulan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yufeng</au><au>Shao, Jingli</au><au>Zhang, Qiulan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Optimal Allocation of Water Resources Based on Surrogate Model of Groundwater Numerical Simulation</atitle><jtitle>Water (Basel)</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>11</volume><issue>4</issue><spage>831</spage><pages>831-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The characteristics of groundwater systems are highly complex. It will take substantial computational resources and running time to optimize a groundwater numerical simulation model. In this study, in order to realize the coupling of simulation and optimization models, the improved backpropagation (BP) neural network was used as a surrogate model of a groundwater numerical simulation; the improved BP neural network was trained with the groundwater level drawdown–pumping volume data output of the simulation model. The method was applied to the water resource optimal allocation in the near future of Wenshang County, Shandong Provence of China. The results show that the water level drawdown output of the improved BP neural network model fits the results of the simulation model well, showing that the improved BP neural network can effectively be the surrogate of a groundwater numerical simulation to be embedded in an optimization model. The improved simulation and optimization technique can make full use of water resources in the whole area. Under an assurance rate of 50%, both water shortage and water shortage rate reduced to zero in the whole area. Under an assurance rate of 75%, water shortage and water shortage rate reduced to about 10% of the conventional scheme, which dramatically improves the comprehensive benefit of the whole area.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w11040831</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2019-04, Vol.11 (4), p.831
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2550495201
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Aquifers
Artificial intelligence
Assurance
Back propagation networks
China
Computer applications
Computer simulation
Drawdown
Environmental aspects
Groundwater
Groundwater levels
Hydrology
Mathematical models
Mathematical optimization
Mathematical programming
Measurement
Methods
Neural networks
Numerical analysis
Optimization
Optimization techniques
Resource allocation
Simulation
Software
Sustainable development
Water levels
Water resources
Water shortages
Water supply
Water table
Water use
Water, Underground
title Study on Optimal Allocation of Water Resources Based on Surrogate Model of Groundwater Numerical Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Optimal%20Allocation%20of%20Water%20Resources%20Based%20on%20Surrogate%20Model%20of%20Groundwater%20Numerical%20Simulation&rft.jtitle=Water%20(Basel)&rft.au=Wang,%20Yufeng&rft.date=2019-04-01&rft.volume=11&rft.issue=4&rft.spage=831&rft.pages=831-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w11040831&rft_dat=%3Cgale_proqu%3EA809735802%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550495201&rft_id=info:pmid/&rft_galeid=A809735802&rfr_iscdi=true