Diverse Arbuscular Mycorrhizal Fungi (AMF) communities colonize plants inhabiting a constructed wetland for wastewater treatment

Constructed wetlands (CWs) are biological wastewater treatment systems that comprise several components where plants and associated organisms play an important role in water depuration. Microbial studies emphasize bacterial dynamics, whereas studies of arbuscular mycorrhizal fungi (AMF) are scarce a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2019, Vol.11 (8), p.1535
Hauptverfasser: Calheiros, Cristina, Pereira, Sofia, Franco, Albina, Castro, Paula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Constructed wetlands (CWs) are biological wastewater treatment systems that comprise several components where plants and associated organisms play an important role in water depuration. Microbial studies emphasize bacterial dynamics, whereas studies of arbuscular mycorrhizal fungi (AMF) are scarce and the functional role of AMF in aquatic and wetland plants is poorly understood. The aim of this study was to analyze the AMF communities colonizing the roots of Canna indica, Canna flaccida, and Watsonia borbonica inhabiting a CW treating wastewater of a tourism unit. The dynamics of the AMF communities were evaluated by Denaturing Gradient Gel Electrophoresis (DGGE) of 18S rRNA gene amplification products along cold (C) and hot (H) seasons for three consecutive years. DGGE profiles allowed the estimation of AMF species richness (S), and Shannon-Wienner (H) and Pielou (J) indexes, for the different plant species, showing differences between species and along the years. Excised bands from DGGE were analyzed and identified through sequencing for arbuscular mycorrhiza, revealing the presence of AMF strains closely related to Glomus sp., Rhizophagus sp. and Acaulospora sp. genera. Concomitant water quality analyses showed that the system was effective in organic and nutrient removal during the sampling period. Findings from this study suggest that AMF diversity found in the CW is influenced by the water constituents, season, and plant species.
ISSN:2073-4441
2073-4441
DOI:10.3390/w11081535