A diffusiophoretic mechanism for ATP-driven transport without motor proteins

The healthy growth and maintenance of a biological system depends on the precise spatial organization of molecules within the cell through the dissipation of energy. Reaction–diffusion mechanisms can facilitate this organization, as can directional cargo transport orchestrated by motor proteins, by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-07, Vol.17 (7), p.850-858
Hauptverfasser: Ramm, Beatrice, Goychuk, Andriy, Khmelinskaia, Alena, Blumhardt, Philipp, Eto, Hiromune, Ganzinger, Kristina A., Frey, Erwin, Schwille, Petra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue 7
container_start_page 850
container_title Nature physics
container_volume 17
creator Ramm, Beatrice
Goychuk, Andriy
Khmelinskaia, Alena
Blumhardt, Philipp
Eto, Hiromune
Ganzinger, Kristina A.
Frey, Erwin
Schwille, Petra
description The healthy growth and maintenance of a biological system depends on the precise spatial organization of molecules within the cell through the dissipation of energy. Reaction–diffusion mechanisms can facilitate this organization, as can directional cargo transport orchestrated by motor proteins, by relying on specific protein interactions. However, transport of material through the cell can also be achieved by active processes based on non-specific, purely physical mechanisms, a phenomenon that remains poorly explored. Here, using a combined experimental and theoretical approach, we discover and describe a hidden function of the Escherichia coli MinDE protein system: in addition to forming dynamic patterns, this system accomplishes the directional active transport of functionally unrelated cargo on membranes. Remarkably, this mechanism enables the sorting of diffusive objects according to their effective size, as evidenced using modular DNA origami–streptavidin nanostructures. We show that the diffusive fluxes of MinDE and non-specific cargo couple via density-dependent friction. This non-specific process constitutes a diffusiophoretic mechanism, as yet unknown in a cell biology setting. This nonlinear coupling between diffusive fluxes could represent a generic physical mechanism for establishing intracellular organization. Protein oscillations linked to cell division in Escherichia coli are shown to localize unrelated molecules on the cell membrane via a diffusiophoretic mechanism, in which an effective friction fosters cargo transport along the fluxes set up by the proteins.
doi_str_mv 10.1038/s41567-021-01213-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550483401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550483401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-bca598b28fdeb3c33bfd79825241d3ef5a22bfb910041c3d6b7358b45801f4b33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wisTZ4PHbjLKuKl1QJFmVtxYlNXZE42A6IvyelCHasZhbn3hkdQi6AXQFDdZ0EyHlJGQfKgANSPCAzKIWkXCg4_N1LPCYnKW0ZE3wOOCOrRdF658bkw7AJ0WbfFJ1tNnXvU1e4EIvF-om20b_bvsix7tMQYi4-fN6EMRddyBMyxJCt79MZOXL1a7LnP_OUPN_erJf3dPV497BcrGgjeJWpaWpZKcOVa63BBtG4tqwUl1xAi9bJmnPjTAXTl9BgOzclSmWEVAycMIin5HLfOx1-G23KehvG2E8nNZeSCYWCwUTxPdXEkFK0Tg_Rd3X81MD0zpreW9OTNf1tTe-qcR9KE9y_2PhX_U_qC9B_cCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550483401</pqid></control><display><type>article</type><title>A diffusiophoretic mechanism for ATP-driven transport without motor proteins</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ramm, Beatrice ; Goychuk, Andriy ; Khmelinskaia, Alena ; Blumhardt, Philipp ; Eto, Hiromune ; Ganzinger, Kristina A. ; Frey, Erwin ; Schwille, Petra</creator><creatorcontrib>Ramm, Beatrice ; Goychuk, Andriy ; Khmelinskaia, Alena ; Blumhardt, Philipp ; Eto, Hiromune ; Ganzinger, Kristina A. ; Frey, Erwin ; Schwille, Petra</creatorcontrib><description>The healthy growth and maintenance of a biological system depends on the precise spatial organization of molecules within the cell through the dissipation of energy. Reaction–diffusion mechanisms can facilitate this organization, as can directional cargo transport orchestrated by motor proteins, by relying on specific protein interactions. However, transport of material through the cell can also be achieved by active processes based on non-specific, purely physical mechanisms, a phenomenon that remains poorly explored. Here, using a combined experimental and theoretical approach, we discover and describe a hidden function of the Escherichia coli MinDE protein system: in addition to forming dynamic patterns, this system accomplishes the directional active transport of functionally unrelated cargo on membranes. Remarkably, this mechanism enables the sorting of diffusive objects according to their effective size, as evidenced using modular DNA origami–streptavidin nanostructures. We show that the diffusive fluxes of MinDE and non-specific cargo couple via density-dependent friction. This non-specific process constitutes a diffusiophoretic mechanism, as yet unknown in a cell biology setting. This nonlinear coupling between diffusive fluxes could represent a generic physical mechanism for establishing intracellular organization. Protein oscillations linked to cell division in Escherichia coli are shown to localize unrelated molecules on the cell membrane via a diffusiophoretic mechanism, in which an effective friction fosters cargo transport along the fluxes set up by the proteins.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-021-01213-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 639/766/530 ; 639/766/747 ; Atomic ; Cargo transportation ; Cell division ; Cell membranes ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Coupling (molecular) ; E coli ; Energy dissipation ; Fluxes ; Friction ; Mathematical and Computational Physics ; Molecular ; Molecular motors ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Proteins ; Theoretical</subject><ispartof>Nature physics, 2021-07, Vol.17 (7), p.850-858</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-bca598b28fdeb3c33bfd79825241d3ef5a22bfb910041c3d6b7358b45801f4b33</citedby><cites>FETCH-LOGICAL-c429t-bca598b28fdeb3c33bfd79825241d3ef5a22bfb910041c3d6b7358b45801f4b33</cites><orcidid>0000-0001-6776-9437 ; 0000-0003-1584-9800 ; 0000-0001-8792-3358 ; 0000-0001-9106-9406 ; 0000-0002-6106-4847 ; 0000-0002-7402-1942 ; 0000-0001-8737-2939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-021-01213-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-021-01213-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Ramm, Beatrice</creatorcontrib><creatorcontrib>Goychuk, Andriy</creatorcontrib><creatorcontrib>Khmelinskaia, Alena</creatorcontrib><creatorcontrib>Blumhardt, Philipp</creatorcontrib><creatorcontrib>Eto, Hiromune</creatorcontrib><creatorcontrib>Ganzinger, Kristina A.</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><creatorcontrib>Schwille, Petra</creatorcontrib><title>A diffusiophoretic mechanism for ATP-driven transport without motor proteins</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The healthy growth and maintenance of a biological system depends on the precise spatial organization of molecules within the cell through the dissipation of energy. Reaction–diffusion mechanisms can facilitate this organization, as can directional cargo transport orchestrated by motor proteins, by relying on specific protein interactions. However, transport of material through the cell can also be achieved by active processes based on non-specific, purely physical mechanisms, a phenomenon that remains poorly explored. Here, using a combined experimental and theoretical approach, we discover and describe a hidden function of the Escherichia coli MinDE protein system: in addition to forming dynamic patterns, this system accomplishes the directional active transport of functionally unrelated cargo on membranes. Remarkably, this mechanism enables the sorting of diffusive objects according to their effective size, as evidenced using modular DNA origami–streptavidin nanostructures. We show that the diffusive fluxes of MinDE and non-specific cargo couple via density-dependent friction. This non-specific process constitutes a diffusiophoretic mechanism, as yet unknown in a cell biology setting. This nonlinear coupling between diffusive fluxes could represent a generic physical mechanism for establishing intracellular organization. Protein oscillations linked to cell division in Escherichia coli are shown to localize unrelated molecules on the cell membrane via a diffusiophoretic mechanism, in which an effective friction fosters cargo transport along the fluxes set up by the proteins.</description><subject>631/57</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Atomic</subject><subject>Cargo transportation</subject><subject>Cell division</subject><subject>Cell membranes</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Coupling (molecular)</subject><subject>E coli</subject><subject>Energy dissipation</subject><subject>Fluxes</subject><subject>Friction</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular motors</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Proteins</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6wisTZ4PHbjLKuKl1QJFmVtxYlNXZE42A6IvyelCHasZhbn3hkdQi6AXQFDdZ0EyHlJGQfKgANSPCAzKIWkXCg4_N1LPCYnKW0ZE3wOOCOrRdF658bkw7AJ0WbfFJ1tNnXvU1e4EIvF-om20b_bvsix7tMQYi4-fN6EMRddyBMyxJCt79MZOXL1a7LnP_OUPN_erJf3dPV497BcrGgjeJWpaWpZKcOVa63BBtG4tqwUl1xAi9bJmnPjTAXTl9BgOzclSmWEVAycMIin5HLfOx1-G23KehvG2E8nNZeSCYWCwUTxPdXEkFK0Tg_Rd3X81MD0zpreW9OTNf1tTe-qcR9KE9y_2PhX_U_qC9B_cCo</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ramm, Beatrice</creator><creator>Goychuk, Andriy</creator><creator>Khmelinskaia, Alena</creator><creator>Blumhardt, Philipp</creator><creator>Eto, Hiromune</creator><creator>Ganzinger, Kristina A.</creator><creator>Frey, Erwin</creator><creator>Schwille, Petra</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6776-9437</orcidid><orcidid>https://orcid.org/0000-0003-1584-9800</orcidid><orcidid>https://orcid.org/0000-0001-8792-3358</orcidid><orcidid>https://orcid.org/0000-0001-9106-9406</orcidid><orcidid>https://orcid.org/0000-0002-6106-4847</orcidid><orcidid>https://orcid.org/0000-0002-7402-1942</orcidid><orcidid>https://orcid.org/0000-0001-8737-2939</orcidid></search><sort><creationdate>20210701</creationdate><title>A diffusiophoretic mechanism for ATP-driven transport without motor proteins</title><author>Ramm, Beatrice ; Goychuk, Andriy ; Khmelinskaia, Alena ; Blumhardt, Philipp ; Eto, Hiromune ; Ganzinger, Kristina A. ; Frey, Erwin ; Schwille, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-bca598b28fdeb3c33bfd79825241d3ef5a22bfb910041c3d6b7358b45801f4b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/57</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Atomic</topic><topic>Cargo transportation</topic><topic>Cell division</topic><topic>Cell membranes</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Coupling (molecular)</topic><topic>E coli</topic><topic>Energy dissipation</topic><topic>Fluxes</topic><topic>Friction</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular motors</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Proteins</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramm, Beatrice</creatorcontrib><creatorcontrib>Goychuk, Andriy</creatorcontrib><creatorcontrib>Khmelinskaia, Alena</creatorcontrib><creatorcontrib>Blumhardt, Philipp</creatorcontrib><creatorcontrib>Eto, Hiromune</creatorcontrib><creatorcontrib>Ganzinger, Kristina A.</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><creatorcontrib>Schwille, Petra</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramm, Beatrice</au><au>Goychuk, Andriy</au><au>Khmelinskaia, Alena</au><au>Blumhardt, Philipp</au><au>Eto, Hiromune</au><au>Ganzinger, Kristina A.</au><au>Frey, Erwin</au><au>Schwille, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A diffusiophoretic mechanism for ATP-driven transport without motor proteins</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>850</spage><epage>858</epage><pages>850-858</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The healthy growth and maintenance of a biological system depends on the precise spatial organization of molecules within the cell through the dissipation of energy. Reaction–diffusion mechanisms can facilitate this organization, as can directional cargo transport orchestrated by motor proteins, by relying on specific protein interactions. However, transport of material through the cell can also be achieved by active processes based on non-specific, purely physical mechanisms, a phenomenon that remains poorly explored. Here, using a combined experimental and theoretical approach, we discover and describe a hidden function of the Escherichia coli MinDE protein system: in addition to forming dynamic patterns, this system accomplishes the directional active transport of functionally unrelated cargo on membranes. Remarkably, this mechanism enables the sorting of diffusive objects according to their effective size, as evidenced using modular DNA origami–streptavidin nanostructures. We show that the diffusive fluxes of MinDE and non-specific cargo couple via density-dependent friction. This non-specific process constitutes a diffusiophoretic mechanism, as yet unknown in a cell biology setting. This nonlinear coupling between diffusive fluxes could represent a generic physical mechanism for establishing intracellular organization. Protein oscillations linked to cell division in Escherichia coli are shown to localize unrelated molecules on the cell membrane via a diffusiophoretic mechanism, in which an effective friction fosters cargo transport along the fluxes set up by the proteins.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-021-01213-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6776-9437</orcidid><orcidid>https://orcid.org/0000-0003-1584-9800</orcidid><orcidid>https://orcid.org/0000-0001-8792-3358</orcidid><orcidid>https://orcid.org/0000-0001-9106-9406</orcidid><orcidid>https://orcid.org/0000-0002-6106-4847</orcidid><orcidid>https://orcid.org/0000-0002-7402-1942</orcidid><orcidid>https://orcid.org/0000-0001-8737-2939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2021-07, Vol.17 (7), p.850-858
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2550483401
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/57
639/766/530
639/766/747
Atomic
Cargo transportation
Cell division
Cell membranes
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Coupling (molecular)
E coli
Energy dissipation
Fluxes
Friction
Mathematical and Computational Physics
Molecular
Molecular motors
Optical and Plasma Physics
Physics
Physics and Astronomy
Proteins
Theoretical
title A diffusiophoretic mechanism for ATP-driven transport without motor proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20diffusiophoretic%20mechanism%20for%20ATP-driven%20transport%20without%20motor%20proteins&rft.jtitle=Nature%20physics&rft.au=Ramm,%20Beatrice&rft.date=2021-07-01&rft.volume=17&rft.issue=7&rft.spage=850&rft.epage=858&rft.pages=850-858&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01213-3&rft_dat=%3Cproquest_cross%3E2550483401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550483401&rft_id=info:pmid/&rfr_iscdi=true