In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor

This study evaluates a novel handheld sensor technology coupled with pattern recognition to provide real-time screening of several soybean traits for breeders and farmers, namely protein and fat quality. We developed predictive regression models that can quantify soybean quality traits based on near...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (21), p.6283, Article 6283
Hauptverfasser: Aykas, Didem Peren, Ball, Christopher, Sia, Amanda, Zhu, Kuanrong, Shotts, Mei-Ling, Schmenk, Anna, Rodriguez-Saona, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 6283
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Aykas, Didem Peren
Ball, Christopher
Sia, Amanda
Zhu, Kuanrong
Shotts, Mei-Ling
Schmenk, Anna
Rodriguez-Saona, Luis
description This study evaluates a novel handheld sensor technology coupled with pattern recognition to provide real-time screening of several soybean traits for breeders and farmers, namely protein and fat quality. We developed predictive regression models that can quantify soybean quality traits based on near-infrared (NIR) spectra acquired by a handheld instrument. This system has been utilized to measure crude protein, essential amino acids (lysine, threonine, methionine, tryptophan, and cysteine) composition, total fat, the profile of major fatty acids, and moisture content in soybeans (n = 107), and soy products including soy isolates, soy concentrates, and soy supplement drink powders (n = 15). Reference quantification of crude protein content used the Dumas combustion method (AOAC 992.23), and individual amino acids were determined using traditional protein hydrolysis (AOAC 982.30). Fat and moisture content were determined by Soxhlet (AOAC 945.16) and Karl Fischer methods, respectively, and fatty acid composition via gas chromatography-fatty acid methyl esterification. Predictive models were built and validated using ground soybean and soy products. Robust partial least square regression (PLSR) models predicted all measured quality parameters with high integrity of fit (R-Pre >= 0.92), low root mean square error of prediction (0.02-3.07%), and high predictive performance (RPD range 2.4-8.8, RER range 7.5-29.2). Our study demonstrated that a handheld NIR sensor can supplant expensive laboratory testing that can take weeks to produce results and provide soybean breeders and growers with a rapid, accurate, and non-destructive tool that can be used in the field for real-time analysis of soybeans to facilitate faster decision-making.
doi_str_mv 10.3390/s20216283
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2550459180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a80ed8018764e75a534307088f40959</doaj_id><sourcerecordid>2458731837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-d2a8023d5fb2c1abdfbd56c12d3c2169c9723842a5eecdc8cd7407a3ed4497963</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxQdRbK0--AVkwBdFRvN3krwIsqhdKC2y-hwyyZ3dLLNJTTIt--2Nbl1an3zKJfndc8_NaZqXGL2nVKEPmSCCeyLpo-YUM8I6SQh6fK8-aZ7lvEWIUErl0-aEUswlQf1pc7UM3cqXuV3ZBBB8WLdxbFdxP4AJ7bfZTL7s21tfNq1pL-MNTO25CW4Dk2svwaRuGcZkErh2BSHH9Lx5Mpopw4u786z58eXz98V5d3H1dbn4dNFZ1qvSOWJkdeP4OBCLzeDGwfHeYuKorasoqwShkhHDAayz0jrBkDAUHGNKqJ6eNcuDrotmq6-T35m019F4_eciprU2qXg7gWZ1FDiJsBQ9A8ENp4wigaQcGVJcVa2PB63rediBsxBKMtMD0YcvwW_0Ot5o0fekrlMF3twJpPhzhlz0zmcL02QCxDlrwrgUFEsqKvr6H3Qb5xTqV2nCOWJcYYkq9fZA2RRzTjAezWCkf0euj5FX9tV990fyb8YVkAfgFoY4ZushWDhiCCEuFRGY1wrhhS-m-BgWcQ6ltr77_1b6C-X9xNs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550459180</pqid></control><display><type>article</type><title>In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Aykas, Didem Peren ; Ball, Christopher ; Sia, Amanda ; Zhu, Kuanrong ; Shotts, Mei-Ling ; Schmenk, Anna ; Rodriguez-Saona, Luis</creator><creatorcontrib>Aykas, Didem Peren ; Ball, Christopher ; Sia, Amanda ; Zhu, Kuanrong ; Shotts, Mei-Ling ; Schmenk, Anna ; Rodriguez-Saona, Luis</creatorcontrib><description>This study evaluates a novel handheld sensor technology coupled with pattern recognition to provide real-time screening of several soybean traits for breeders and farmers, namely protein and fat quality. We developed predictive regression models that can quantify soybean quality traits based on near-infrared (NIR) spectra acquired by a handheld instrument. This system has been utilized to measure crude protein, essential amino acids (lysine, threonine, methionine, tryptophan, and cysteine) composition, total fat, the profile of major fatty acids, and moisture content in soybeans (n = 107), and soy products including soy isolates, soy concentrates, and soy supplement drink powders (n = 15). Reference quantification of crude protein content used the Dumas combustion method (AOAC 992.23), and individual amino acids were determined using traditional protein hydrolysis (AOAC 982.30). Fat and moisture content were determined by Soxhlet (AOAC 945.16) and Karl Fischer methods, respectively, and fatty acid composition via gas chromatography-fatty acid methyl esterification. Predictive models were built and validated using ground soybean and soy products. Robust partial least square regression (PLSR) models predicted all measured quality parameters with high integrity of fit (R-Pre &gt;= 0.92), low root mean square error of prediction (0.02-3.07%), and high predictive performance (RPD range 2.4-8.8, RER range 7.5-29.2). Our study demonstrated that a handheld NIR sensor can supplant expensive laboratory testing that can take weeks to produce results and provide soybean breeders and growers with a rapid, accurate, and non-destructive tool that can be used in the field for real-time analysis of soybeans to facilitate faster decision-making.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20216283</identifier><identifier>PMID: 33158206</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Amino acids ; Amino Acids - analysis ; Chemistry ; Chemistry, Analytical ; Chromatography ; Composition ; Engineering ; Engineering, Electrical &amp; Electronic ; essential amino acids ; Esterification ; fat content ; Fats - analysis ; Fatty acids ; Fatty Acids - analysis ; Feeds ; Food Analysis - instrumentation ; Food Quality ; Gas chromatography ; Glycine max - chemistry ; Infrared spectra ; Instruments &amp; Instrumentation ; Laboratories ; Least-Squares Analysis ; Livestock ; Lysine ; major fatty acids ; Methionine ; Moisture content ; Near infrared radiation ; near-infrared spectroscopy ; Nitrogen ; Oils &amp; fats ; Pattern recognition ; Physical Sciences ; Plant Proteins - analysis ; Prediction models ; protein content ; Proteins ; Real time ; Science &amp; Technology ; Soy products ; soybean ; Soybeans ; Spectroscopy, Near-Infrared ; Spectrum analysis ; Technology ; Tryptophan</subject><ispartof>Sensors (Basel, Switzerland), 2020-11, Vol.20 (21), p.6283, Article 6283</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589271500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c469t-d2a8023d5fb2c1abdfbd56c12d3c2169c9723842a5eecdc8cd7407a3ed4497963</citedby><cites>FETCH-LOGICAL-c469t-d2a8023d5fb2c1abdfbd56c12d3c2169c9723842a5eecdc8cd7407a3ed4497963</cites><orcidid>0000-0002-5500-0441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662469/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662469/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33158206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aykas, Didem Peren</creatorcontrib><creatorcontrib>Ball, Christopher</creatorcontrib><creatorcontrib>Sia, Amanda</creatorcontrib><creatorcontrib>Zhu, Kuanrong</creatorcontrib><creatorcontrib>Shotts, Mei-Ling</creatorcontrib><creatorcontrib>Schmenk, Anna</creatorcontrib><creatorcontrib>Rodriguez-Saona, Luis</creatorcontrib><title>In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><addtitle>Sensors (Basel)</addtitle><description>This study evaluates a novel handheld sensor technology coupled with pattern recognition to provide real-time screening of several soybean traits for breeders and farmers, namely protein and fat quality. We developed predictive regression models that can quantify soybean quality traits based on near-infrared (NIR) spectra acquired by a handheld instrument. This system has been utilized to measure crude protein, essential amino acids (lysine, threonine, methionine, tryptophan, and cysteine) composition, total fat, the profile of major fatty acids, and moisture content in soybeans (n = 107), and soy products including soy isolates, soy concentrates, and soy supplement drink powders (n = 15). Reference quantification of crude protein content used the Dumas combustion method (AOAC 992.23), and individual amino acids were determined using traditional protein hydrolysis (AOAC 982.30). Fat and moisture content were determined by Soxhlet (AOAC 945.16) and Karl Fischer methods, respectively, and fatty acid composition via gas chromatography-fatty acid methyl esterification. Predictive models were built and validated using ground soybean and soy products. Robust partial least square regression (PLSR) models predicted all measured quality parameters with high integrity of fit (R-Pre &gt;= 0.92), low root mean square error of prediction (0.02-3.07%), and high predictive performance (RPD range 2.4-8.8, RER range 7.5-29.2). Our study demonstrated that a handheld NIR sensor can supplant expensive laboratory testing that can take weeks to produce results and provide soybean breeders and growers with a rapid, accurate, and non-destructive tool that can be used in the field for real-time analysis of soybeans to facilitate faster decision-making.</description><subject>Amino acids</subject><subject>Amino Acids - analysis</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Chromatography</subject><subject>Composition</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>essential amino acids</subject><subject>Esterification</subject><subject>fat content</subject><subject>Fats - analysis</subject><subject>Fatty acids</subject><subject>Fatty Acids - analysis</subject><subject>Feeds</subject><subject>Food Analysis - instrumentation</subject><subject>Food Quality</subject><subject>Gas chromatography</subject><subject>Glycine max - chemistry</subject><subject>Infrared spectra</subject><subject>Instruments &amp; Instrumentation</subject><subject>Laboratories</subject><subject>Least-Squares Analysis</subject><subject>Livestock</subject><subject>Lysine</subject><subject>major fatty acids</subject><subject>Methionine</subject><subject>Moisture content</subject><subject>Near infrared radiation</subject><subject>near-infrared spectroscopy</subject><subject>Nitrogen</subject><subject>Oils &amp; fats</subject><subject>Pattern recognition</subject><subject>Physical Sciences</subject><subject>Plant Proteins - analysis</subject><subject>Prediction models</subject><subject>protein content</subject><subject>Proteins</subject><subject>Real time</subject><subject>Science &amp; Technology</subject><subject>Soy products</subject><subject>soybean</subject><subject>Soybeans</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Spectrum analysis</subject><subject>Technology</subject><subject>Tryptophan</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkV9rFDEUxQdRbK0--AVkwBdFRvN3krwIsqhdKC2y-hwyyZ3dLLNJTTIt--2Nbl1an3zKJfndc8_NaZqXGL2nVKEPmSCCeyLpo-YUM8I6SQh6fK8-aZ7lvEWIUErl0-aEUswlQf1pc7UM3cqXuV3ZBBB8WLdxbFdxP4AJ7bfZTL7s21tfNq1pL-MNTO25CW4Dk2svwaRuGcZkErh2BSHH9Lx5Mpopw4u786z58eXz98V5d3H1dbn4dNFZ1qvSOWJkdeP4OBCLzeDGwfHeYuKorasoqwShkhHDAayz0jrBkDAUHGNKqJ6eNcuDrotmq6-T35m019F4_eciprU2qXg7gWZ1FDiJsBQ9A8ENp4wigaQcGVJcVa2PB63rediBsxBKMtMD0YcvwW_0Ot5o0fekrlMF3twJpPhzhlz0zmcL02QCxDlrwrgUFEsqKvr6H3Qb5xTqV2nCOWJcYYkq9fZA2RRzTjAezWCkf0euj5FX9tV990fyb8YVkAfgFoY4ZushWDhiCCEuFRGY1wrhhS-m-BgWcQ6ltr77_1b6C-X9xNs</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Aykas, Didem Peren</creator><creator>Ball, Christopher</creator><creator>Sia, Amanda</creator><creator>Zhu, Kuanrong</creator><creator>Shotts, Mei-Ling</creator><creator>Schmenk, Anna</creator><creator>Rodriguez-Saona, Luis</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5500-0441</orcidid></search><sort><creationdate>20201104</creationdate><title>In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor</title><author>Aykas, Didem Peren ; Ball, Christopher ; Sia, Amanda ; Zhu, Kuanrong ; Shotts, Mei-Ling ; Schmenk, Anna ; Rodriguez-Saona, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-d2a8023d5fb2c1abdfbd56c12d3c2169c9723842a5eecdc8cd7407a3ed4497963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Amino Acids - analysis</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Chromatography</topic><topic>Composition</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>essential amino acids</topic><topic>Esterification</topic><topic>fat content</topic><topic>Fats - analysis</topic><topic>Fatty acids</topic><topic>Fatty Acids - analysis</topic><topic>Feeds</topic><topic>Food Analysis - instrumentation</topic><topic>Food Quality</topic><topic>Gas chromatography</topic><topic>Glycine max - chemistry</topic><topic>Infrared spectra</topic><topic>Instruments &amp; Instrumentation</topic><topic>Laboratories</topic><topic>Least-Squares Analysis</topic><topic>Livestock</topic><topic>Lysine</topic><topic>major fatty acids</topic><topic>Methionine</topic><topic>Moisture content</topic><topic>Near infrared radiation</topic><topic>near-infrared spectroscopy</topic><topic>Nitrogen</topic><topic>Oils &amp; fats</topic><topic>Pattern recognition</topic><topic>Physical Sciences</topic><topic>Plant Proteins - analysis</topic><topic>Prediction models</topic><topic>protein content</topic><topic>Proteins</topic><topic>Real time</topic><topic>Science &amp; Technology</topic><topic>Soy products</topic><topic>soybean</topic><topic>Soybeans</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Spectrum analysis</topic><topic>Technology</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aykas, Didem Peren</creatorcontrib><creatorcontrib>Ball, Christopher</creatorcontrib><creatorcontrib>Sia, Amanda</creatorcontrib><creatorcontrib>Zhu, Kuanrong</creatorcontrib><creatorcontrib>Shotts, Mei-Ling</creatorcontrib><creatorcontrib>Schmenk, Anna</creatorcontrib><creatorcontrib>Rodriguez-Saona, Luis</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aykas, Didem Peren</au><au>Ball, Christopher</au><au>Sia, Amanda</au><au>Zhu, Kuanrong</au><au>Shotts, Mei-Ling</au><au>Schmenk, Anna</au><au>Rodriguez-Saona, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><addtitle>Sensors (Basel)</addtitle><date>2020-11-04</date><risdate>2020</risdate><volume>20</volume><issue>21</issue><spage>6283</spage><pages>6283-</pages><artnum>6283</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This study evaluates a novel handheld sensor technology coupled with pattern recognition to provide real-time screening of several soybean traits for breeders and farmers, namely protein and fat quality. We developed predictive regression models that can quantify soybean quality traits based on near-infrared (NIR) spectra acquired by a handheld instrument. This system has been utilized to measure crude protein, essential amino acids (lysine, threonine, methionine, tryptophan, and cysteine) composition, total fat, the profile of major fatty acids, and moisture content in soybeans (n = 107), and soy products including soy isolates, soy concentrates, and soy supplement drink powders (n = 15). Reference quantification of crude protein content used the Dumas combustion method (AOAC 992.23), and individual amino acids were determined using traditional protein hydrolysis (AOAC 982.30). Fat and moisture content were determined by Soxhlet (AOAC 945.16) and Karl Fischer methods, respectively, and fatty acid composition via gas chromatography-fatty acid methyl esterification. Predictive models were built and validated using ground soybean and soy products. Robust partial least square regression (PLSR) models predicted all measured quality parameters with high integrity of fit (R-Pre &gt;= 0.92), low root mean square error of prediction (0.02-3.07%), and high predictive performance (RPD range 2.4-8.8, RER range 7.5-29.2). Our study demonstrated that a handheld NIR sensor can supplant expensive laboratory testing that can take weeks to produce results and provide soybean breeders and growers with a rapid, accurate, and non-destructive tool that can be used in the field for real-time analysis of soybeans to facilitate faster decision-making.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33158206</pmid><doi>10.3390/s20216283</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5500-0441</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-11, Vol.20 (21), p.6283, Article 6283
issn 1424-8220
1424-8220
language eng
recordid cdi_proquest_journals_2550459180
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino acids
Amino Acids - analysis
Chemistry
Chemistry, Analytical
Chromatography
Composition
Engineering
Engineering, Electrical & Electronic
essential amino acids
Esterification
fat content
Fats - analysis
Fatty acids
Fatty Acids - analysis
Feeds
Food Analysis - instrumentation
Food Quality
Gas chromatography
Glycine max - chemistry
Infrared spectra
Instruments & Instrumentation
Laboratories
Least-Squares Analysis
Livestock
Lysine
major fatty acids
Methionine
Moisture content
Near infrared radiation
near-infrared spectroscopy
Nitrogen
Oils & fats
Pattern recognition
Physical Sciences
Plant Proteins - analysis
Prediction models
protein content
Proteins
Real time
Science & Technology
Soy products
soybean
Soybeans
Spectroscopy, Near-Infrared
Spectrum analysis
Technology
Tryptophan
title In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20Screening%20of%20Soybean%20Quality%20with%20a%20Novel%20Handheld%20Near-Infrared%20Sensor&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Aykas,%20Didem%20Peren&rft.date=2020-11-04&rft.volume=20&rft.issue=21&rft.spage=6283&rft.pages=6283-&rft.artnum=6283&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20216283&rft_dat=%3Cproquest_pubme%3E2458731837%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550459180&rft_id=info:pmid/33158206&rft_doaj_id=oai_doaj_org_article_4a80ed8018764e75a534307088f40959&rfr_iscdi=true