Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements
Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN b...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2019-12, Vol.11 (24), p.3005 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 3005 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 11 |
creator | Park, Hyeon-Ju Park, Jin-Soo Kim, Sang-Woo Chong, Heesung Lee, Hana Kim, Hyunjae Ahn, Joon-Young Kim, Dai-Gon Kim, Jhoon Park, Sang Seo |
description | Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU). |
doi_str_mv | 10.3390/rs11243005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550298696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550298696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWLQX_4KAN2E1mXx0c6xF20K14MfJw5LNTkpLd7Mmu0L_e1cq6FzePPi9GXiEXHF2K4RhdzFxDlIwpk7ICNgEMgkGTv_t52Sc0o4NIwQ3TI7Ixwt2cYtfdk-Dp89roLOw7-uGTuvQN12iPoaazuNgquzeJqzo4tBiTC26Lg6pZW0322ZDX7FJIdIntKmPWOOQvSRn3u4Tjn_1grw_PrzNFtlqPV_OpqvMgVFdJsB4rjSAnBhjmLUgHYDXqtS6ct6Z3AIvPUKZlyB9aSe5dqC4q7CSIq_EBbk-3m1j-OwxdcUu9LEZXhagFAOTa6MH6uZIuRhSiuiLNm5rGw8FZ8VPf8Vff-IbLExiVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550298696</pqid></control><display><type>article</type><title>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Park, Hyeon-Ju ; Park, Jin-Soo ; Kim, Sang-Woo ; Chong, Heesung ; Lee, Hana ; Kim, Hyunjae ; Ahn, Joon-Young ; Kim, Dai-Gon ; Kim, Jhoon ; Park, Sang Seo</creator><creatorcontrib>Park, Hyeon-Ju ; Park, Jin-Soo ; Kim, Sang-Woo ; Chong, Heesung ; Lee, Hana ; Kim, Hyunjae ; Ahn, Joon-Young ; Kim, Dai-Gon ; Kim, Jhoon ; Park, Sang Seo</creatorcontrib><description>Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU).</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs11243005</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Air pollution ; Algorithms ; Bias ; Datasets ; Hyperspectral imaging ; Nitrogen dioxide ; Optical analysis ; Optical thickness ; Radiation ; Sensitivity analysis ; Sensors ; Spectrum analysis ; Stratosphere ; Temporal variations ; Uncertainty ; Urban areas ; Zenith</subject><ispartof>Remote sensing (Basel, Switzerland), 2019-12, Vol.11 (24), p.3005</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</citedby><cites>FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</cites><orcidid>0000-0002-5703-4792 ; 0000-0002-1508-9218 ; 0000-0003-1279-8331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Hyeon-Ju</creatorcontrib><creatorcontrib>Park, Jin-Soo</creatorcontrib><creatorcontrib>Kim, Sang-Woo</creatorcontrib><creatorcontrib>Chong, Heesung</creatorcontrib><creatorcontrib>Lee, Hana</creatorcontrib><creatorcontrib>Kim, Hyunjae</creatorcontrib><creatorcontrib>Ahn, Joon-Young</creatorcontrib><creatorcontrib>Kim, Dai-Gon</creatorcontrib><creatorcontrib>Kim, Jhoon</creatorcontrib><creatorcontrib>Park, Sang Seo</creatorcontrib><title>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</title><title>Remote sensing (Basel, Switzerland)</title><description>Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU).</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Datasets</subject><subject>Hyperspectral imaging</subject><subject>Nitrogen dioxide</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Radiation</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Stratosphere</subject><subject>Temporal variations</subject><subject>Uncertainty</subject><subject>Urban areas</subject><subject>Zenith</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1LAzEQxYMoWLQX_4KAN2E1mXx0c6xF20K14MfJw5LNTkpLd7Mmu0L_e1cq6FzePPi9GXiEXHF2K4RhdzFxDlIwpk7ICNgEMgkGTv_t52Sc0o4NIwQ3TI7Ixwt2cYtfdk-Dp89roLOw7-uGTuvQN12iPoaazuNgquzeJqzo4tBiTC26Lg6pZW0322ZDX7FJIdIntKmPWOOQvSRn3u4Tjn_1grw_PrzNFtlqPV_OpqvMgVFdJsB4rjSAnBhjmLUgHYDXqtS6ct6Z3AIvPUKZlyB9aSe5dqC4q7CSIq_EBbk-3m1j-OwxdcUu9LEZXhagFAOTa6MH6uZIuRhSiuiLNm5rGw8FZ8VPf8Vff-IbLExiVg</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Park, Hyeon-Ju</creator><creator>Park, Jin-Soo</creator><creator>Kim, Sang-Woo</creator><creator>Chong, Heesung</creator><creator>Lee, Hana</creator><creator>Kim, Hyunjae</creator><creator>Ahn, Joon-Young</creator><creator>Kim, Dai-Gon</creator><creator>Kim, Jhoon</creator><creator>Park, Sang Seo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5703-4792</orcidid><orcidid>https://orcid.org/0000-0002-1508-9218</orcidid><orcidid>https://orcid.org/0000-0003-1279-8331</orcidid></search><sort><creationdate>20191213</creationdate><title>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</title><author>Park, Hyeon-Ju ; Park, Jin-Soo ; Kim, Sang-Woo ; Chong, Heesung ; Lee, Hana ; Kim, Hyunjae ; Ahn, Joon-Young ; Kim, Dai-Gon ; Kim, Jhoon ; Park, Sang Seo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Datasets</topic><topic>Hyperspectral imaging</topic><topic>Nitrogen dioxide</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Radiation</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Stratosphere</topic><topic>Temporal variations</topic><topic>Uncertainty</topic><topic>Urban areas</topic><topic>Zenith</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyeon-Ju</creatorcontrib><creatorcontrib>Park, Jin-Soo</creatorcontrib><creatorcontrib>Kim, Sang-Woo</creatorcontrib><creatorcontrib>Chong, Heesung</creatorcontrib><creatorcontrib>Lee, Hana</creatorcontrib><creatorcontrib>Kim, Hyunjae</creatorcontrib><creatorcontrib>Ahn, Joon-Young</creatorcontrib><creatorcontrib>Kim, Dai-Gon</creatorcontrib><creatorcontrib>Kim, Jhoon</creatorcontrib><creatorcontrib>Park, Sang Seo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyeon-Ju</au><au>Park, Jin-Soo</au><au>Kim, Sang-Woo</au><au>Chong, Heesung</au><au>Lee, Hana</au><au>Kim, Hyunjae</au><au>Ahn, Joon-Young</au><au>Kim, Dai-Gon</au><au>Kim, Jhoon</au><au>Park, Sang Seo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2019-12-13</date><risdate>2019</risdate><volume>11</volume><issue>24</issue><spage>3005</spage><pages>3005-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs11243005</doi><orcidid>https://orcid.org/0000-0002-5703-4792</orcidid><orcidid>https://orcid.org/0000-0002-1508-9218</orcidid><orcidid>https://orcid.org/0000-0003-1279-8331</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2019-12, Vol.11 (24), p.3005 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_proquest_journals_2550298696 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Aerosols Air pollution Algorithms Bias Datasets Hyperspectral imaging Nitrogen dioxide Optical analysis Optical thickness Radiation Sensitivity analysis Sensors Spectrum analysis Stratosphere Temporal variations Uncertainty Urban areas Zenith |
title | Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20NO2%20Column%20Amounts%20from%20Ground-Based%20Hyperspectral%20Imaging%20Sensor%20Measurements&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Park,%20Hyeon-Ju&rft.date=2019-12-13&rft.volume=11&rft.issue=24&rft.spage=3005&rft.pages=3005-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs11243005&rft_dat=%3Cproquest_cross%3E2550298696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550298696&rft_id=info:pmid/&rfr_iscdi=true |