Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements

Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2019-12, Vol.11 (24), p.3005
Hauptverfasser: Park, Hyeon-Ju, Park, Jin-Soo, Kim, Sang-Woo, Chong, Heesung, Lee, Hana, Kim, Hyunjae, Ahn, Joon-Young, Kim, Dai-Gon, Kim, Jhoon, Park, Sang Seo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 3005
container_title Remote sensing (Basel, Switzerland)
container_volume 11
creator Park, Hyeon-Ju
Park, Jin-Soo
Kim, Sang-Woo
Chong, Heesung
Lee, Hana
Kim, Hyunjae
Ahn, Joon-Young
Kim, Dai-Gon
Kim, Jhoon
Park, Sang Seo
description Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU).
doi_str_mv 10.3390/rs11243005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550298696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550298696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWLQX_4KAN2E1mXx0c6xF20K14MfJw5LNTkpLd7Mmu0L_e1cq6FzePPi9GXiEXHF2K4RhdzFxDlIwpk7ICNgEMgkGTv_t52Sc0o4NIwQ3TI7Ixwt2cYtfdk-Dp89roLOw7-uGTuvQN12iPoaazuNgquzeJqzo4tBiTC26Lg6pZW0322ZDX7FJIdIntKmPWOOQvSRn3u4Tjn_1grw_PrzNFtlqPV_OpqvMgVFdJsB4rjSAnBhjmLUgHYDXqtS6ct6Z3AIvPUKZlyB9aSe5dqC4q7CSIq_EBbk-3m1j-OwxdcUu9LEZXhagFAOTa6MH6uZIuRhSiuiLNm5rGw8FZ8VPf8Vff-IbLExiVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550298696</pqid></control><display><type>article</type><title>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Park, Hyeon-Ju ; Park, Jin-Soo ; Kim, Sang-Woo ; Chong, Heesung ; Lee, Hana ; Kim, Hyunjae ; Ahn, Joon-Young ; Kim, Dai-Gon ; Kim, Jhoon ; Park, Sang Seo</creator><creatorcontrib>Park, Hyeon-Ju ; Park, Jin-Soo ; Kim, Sang-Woo ; Chong, Heesung ; Lee, Hana ; Kim, Hyunjae ; Ahn, Joon-Young ; Kim, Dai-Gon ; Kim, Jhoon ; Park, Sang Seo</creatorcontrib><description>Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU).</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs11243005</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Air pollution ; Algorithms ; Bias ; Datasets ; Hyperspectral imaging ; Nitrogen dioxide ; Optical analysis ; Optical thickness ; Radiation ; Sensitivity analysis ; Sensors ; Spectrum analysis ; Stratosphere ; Temporal variations ; Uncertainty ; Urban areas ; Zenith</subject><ispartof>Remote sensing (Basel, Switzerland), 2019-12, Vol.11 (24), p.3005</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</citedby><cites>FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</cites><orcidid>0000-0002-5703-4792 ; 0000-0002-1508-9218 ; 0000-0003-1279-8331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Hyeon-Ju</creatorcontrib><creatorcontrib>Park, Jin-Soo</creatorcontrib><creatorcontrib>Kim, Sang-Woo</creatorcontrib><creatorcontrib>Chong, Heesung</creatorcontrib><creatorcontrib>Lee, Hana</creatorcontrib><creatorcontrib>Kim, Hyunjae</creatorcontrib><creatorcontrib>Ahn, Joon-Young</creatorcontrib><creatorcontrib>Kim, Dai-Gon</creatorcontrib><creatorcontrib>Kim, Jhoon</creatorcontrib><creatorcontrib>Park, Sang Seo</creatorcontrib><title>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</title><title>Remote sensing (Basel, Switzerland)</title><description>Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU).</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Datasets</subject><subject>Hyperspectral imaging</subject><subject>Nitrogen dioxide</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Radiation</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Stratosphere</subject><subject>Temporal variations</subject><subject>Uncertainty</subject><subject>Urban areas</subject><subject>Zenith</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1LAzEQxYMoWLQX_4KAN2E1mXx0c6xF20K14MfJw5LNTkpLd7Mmu0L_e1cq6FzePPi9GXiEXHF2K4RhdzFxDlIwpk7ICNgEMgkGTv_t52Sc0o4NIwQ3TI7Ixwt2cYtfdk-Dp89roLOw7-uGTuvQN12iPoaazuNgquzeJqzo4tBiTC26Lg6pZW0322ZDX7FJIdIntKmPWOOQvSRn3u4Tjn_1grw_PrzNFtlqPV_OpqvMgVFdJsB4rjSAnBhjmLUgHYDXqtS6ct6Z3AIvPUKZlyB9aSe5dqC4q7CSIq_EBbk-3m1j-OwxdcUu9LEZXhagFAOTa6MH6uZIuRhSiuiLNm5rGw8FZ8VPf8Vff-IbLExiVg</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Park, Hyeon-Ju</creator><creator>Park, Jin-Soo</creator><creator>Kim, Sang-Woo</creator><creator>Chong, Heesung</creator><creator>Lee, Hana</creator><creator>Kim, Hyunjae</creator><creator>Ahn, Joon-Young</creator><creator>Kim, Dai-Gon</creator><creator>Kim, Jhoon</creator><creator>Park, Sang Seo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5703-4792</orcidid><orcidid>https://orcid.org/0000-0002-1508-9218</orcidid><orcidid>https://orcid.org/0000-0003-1279-8331</orcidid></search><sort><creationdate>20191213</creationdate><title>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</title><author>Park, Hyeon-Ju ; Park, Jin-Soo ; Kim, Sang-Woo ; Chong, Heesung ; Lee, Hana ; Kim, Hyunjae ; Ahn, Joon-Young ; Kim, Dai-Gon ; Kim, Jhoon ; Park, Sang Seo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-329f15622479990aa24c22f65b66dcfc98a21bfe2b8b24fba786c251cded438d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Datasets</topic><topic>Hyperspectral imaging</topic><topic>Nitrogen dioxide</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Radiation</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Stratosphere</topic><topic>Temporal variations</topic><topic>Uncertainty</topic><topic>Urban areas</topic><topic>Zenith</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyeon-Ju</creatorcontrib><creatorcontrib>Park, Jin-Soo</creatorcontrib><creatorcontrib>Kim, Sang-Woo</creatorcontrib><creatorcontrib>Chong, Heesung</creatorcontrib><creatorcontrib>Lee, Hana</creatorcontrib><creatorcontrib>Kim, Hyunjae</creatorcontrib><creatorcontrib>Ahn, Joon-Young</creatorcontrib><creatorcontrib>Kim, Dai-Gon</creatorcontrib><creatorcontrib>Kim, Jhoon</creatorcontrib><creatorcontrib>Park, Sang Seo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyeon-Ju</au><au>Park, Jin-Soo</au><au>Kim, Sang-Woo</au><au>Chong, Heesung</au><au>Lee, Hana</au><au>Kim, Hyunjae</au><au>Ahn, Joon-Young</au><au>Kim, Dai-Gon</au><au>Kim, Jhoon</au><au>Park, Sang Seo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2019-12-13</date><risdate>2019</risdate><volume>11</volume><issue>24</issue><spage>3005</spage><pages>3005-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Total column amounts of NO2 (TCN) were estimated from ground-based hyperspectral imaging sensor (HIS) measurements in a polluted urban area (Seoul, Korea) by applying the radiance ratio fitting method with five wavelength pairs from 400 to 460 nm. We quantified the uncertainty of the retrieved TCN based on several factors. The estimated TCN uncertainty was up to 0.09 Dobson unit (DU), equivalent to 2.687 × 1020 molecules m−2) given a 1° error for the observation geometries, including the solar zenith angle, viewing zenith angle, and relative azimuth angle. About 0.1 DU (6.8%) was estimated for an aerosol optical depth (AOD) uncertainty of 0.01. In addition, the uncertainty due to the NO2 vertical profile was 14% to 22%. Compared with the co-located Pandora spectrophotometer measurements, the HIS captured the temporal variation of the TCN during the intensive observation period. The correlation between the TCN from the HIS and Pandora also showed good agreement, with a slight positive bias (bias: 0.6 DU, root mean square error: 0.7 DU).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs11243005</doi><orcidid>https://orcid.org/0000-0002-5703-4792</orcidid><orcidid>https://orcid.org/0000-0002-1508-9218</orcidid><orcidid>https://orcid.org/0000-0003-1279-8331</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2019-12, Vol.11 (24), p.3005
issn 2072-4292
2072-4292
language eng
recordid cdi_proquest_journals_2550298696
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Aerosols
Air pollution
Algorithms
Bias
Datasets
Hyperspectral imaging
Nitrogen dioxide
Optical analysis
Optical thickness
Radiation
Sensitivity analysis
Sensors
Spectrum analysis
Stratosphere
Temporal variations
Uncertainty
Urban areas
Zenith
title Retrieval of NO2 Column Amounts from Ground-Based Hyperspectral Imaging Sensor Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval%20of%20NO2%20Column%20Amounts%20from%20Ground-Based%20Hyperspectral%20Imaging%20Sensor%20Measurements&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Park,%20Hyeon-Ju&rft.date=2019-12-13&rft.volume=11&rft.issue=24&rft.spage=3005&rft.pages=3005-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs11243005&rft_dat=%3Cproquest_cross%3E2550298696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550298696&rft_id=info:pmid/&rfr_iscdi=true