Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation

People with disabilities (PWD) face a number of challenges such as obstacle avoidance or taking a minimum path to reach a destination while travelling or taking public transport, especially in airports or bus stations. In some cases, PWD, and specifically visually impaired people, have to wait longe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-01, Vol.12 (1), p.119
Hauptverfasser: Jin, SongGuo, Ahmed, Minhaz Uddin, Kim, Jin Woo, Kim, Yeong Hyeon, Rhee, Phill Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 119
container_title Symmetry (Basel)
container_volume 12
creator Jin, SongGuo
Ahmed, Minhaz Uddin
Kim, Jin Woo
Kim, Yeong Hyeon
Rhee, Phill Kyu
description People with disabilities (PWD) face a number of challenges such as obstacle avoidance or taking a minimum path to reach a destination while travelling or taking public transport, especially in airports or bus stations. In some cases, PWD, and specifically visually impaired people, have to wait longer to overcome these situations. In order to solve these problems, the computer-vision community has applied a number of techniques that are nonetheless insufficient to handle these situations. In this paper, we propose a visual simultaneous localization and mapping for moving-person tracking (VSLAMMPT) method that can assist PWD in smooth movement by knowing a position in an unknown environment. We applied expected error reduction with active-semisupervised-learning (EER–ASSL)-based person detection to eliminate noisy samples in dynamic environments. After that, we applied VSLAMMPT for effective smoothing, obstacle avoidance, and uniform navigation in an indoor environment. We analyze the joint approach symmetrically and applied the proposed method to benchmark datasets and obtained impressive performance.
doi_str_mv 10.3390/sym12010119
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2550272827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be85b47459734e02929cc11ff9454459</doaj_id><sourcerecordid>2550272827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-dacf1cc9b7a40232b3243447992deb601e8d029e9bad62b5ee88eecbc7a6353b3</originalsourceid><addsrcrecordid>eNpNkctqwzAQRUVpoaHNqj9g6LK41dO2liH0EUibRR9bMZLloGBbrmQH0q-vk5SS2cxwuZyZ4SJ0Q_A9YxI_xF1DKCaYEHmGJhTnLC2k5Ocn8yWaxrjBYwkseIYnyMx9o13r2nWy0rEHU9tktvWuhNbYBNoy-XJxgDp5d81Q99BaP8Rk6Q3U7gd659uD6RW6bs-ofEgWbenH9gZbtz44rtFFBXW0079-hT6fHj_mL-ly9byYz5apYRnv0xJMRYyROgeOKaOaUc44z6WkpdUZJrYoMZVWaigzqoW1RWGt0SaHjAmm2RVaHLmlh43qgmsg7JQHpw6CD2sFoXfji0rbQmiecyFzxu1IpdIYQqpKcsFHdWTdHlld8N-Djb3a-CG04_mKCoFpTguaj667o8sEH2Ow1f9WgtU-FHUSCvsFiKt_Rw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550272827</pqid></control><display><type>article</type><title>Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jin, SongGuo ; Ahmed, Minhaz Uddin ; Kim, Jin Woo ; Kim, Yeong Hyeon ; Rhee, Phill Kyu</creator><creatorcontrib>Jin, SongGuo ; Ahmed, Minhaz Uddin ; Kim, Jin Woo ; Kim, Yeong Hyeon ; Rhee, Phill Kyu</creatorcontrib><description>People with disabilities (PWD) face a number of challenges such as obstacle avoidance or taking a minimum path to reach a destination while travelling or taking public transport, especially in airports or bus stations. In some cases, PWD, and specifically visually impaired people, have to wait longer to overcome these situations. In order to solve these problems, the computer-vision community has applied a number of techniques that are nonetheless insufficient to handle these situations. In this paper, we propose a visual simultaneous localization and mapping for moving-person tracking (VSLAMMPT) method that can assist PWD in smooth movement by knowing a position in an unknown environment. We applied expected error reduction with active-semisupervised-learning (EER–ASSL)-based person detection to eliminate noisy samples in dynamic environments. After that, we applied VSLAMMPT for effective smoothing, obstacle avoidance, and uniform navigation in an indoor environment. We analyze the joint approach symmetrically and applied the proposed method to benchmark datasets and obtained impressive performance.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym12010119</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Airports ; Algorithms ; Cameras ; depth estimation ; Error reduction ; Indoor environments ; Indoor navigation ; Localization ; Methods ; Movement ; Navigation systems ; object detection ; Obstacle avoidance ; People with disabilities ; Public transportation ; Robots ; Sensors ; Simultaneous localization and mapping ; slam ; Unknown environments ; Visual impairment</subject><ispartof>Symmetry (Basel), 2020-01, Vol.12 (1), p.119</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-dacf1cc9b7a40232b3243447992deb601e8d029e9bad62b5ee88eecbc7a6353b3</citedby><cites>FETCH-LOGICAL-c364t-dacf1cc9b7a40232b3243447992deb601e8d029e9bad62b5ee88eecbc7a6353b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, SongGuo</creatorcontrib><creatorcontrib>Ahmed, Minhaz Uddin</creatorcontrib><creatorcontrib>Kim, Jin Woo</creatorcontrib><creatorcontrib>Kim, Yeong Hyeon</creatorcontrib><creatorcontrib>Rhee, Phill Kyu</creatorcontrib><title>Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation</title><title>Symmetry (Basel)</title><description>People with disabilities (PWD) face a number of challenges such as obstacle avoidance or taking a minimum path to reach a destination while travelling or taking public transport, especially in airports or bus stations. In some cases, PWD, and specifically visually impaired people, have to wait longer to overcome these situations. In order to solve these problems, the computer-vision community has applied a number of techniques that are nonetheless insufficient to handle these situations. In this paper, we propose a visual simultaneous localization and mapping for moving-person tracking (VSLAMMPT) method that can assist PWD in smooth movement by knowing a position in an unknown environment. We applied expected error reduction with active-semisupervised-learning (EER–ASSL)-based person detection to eliminate noisy samples in dynamic environments. After that, we applied VSLAMMPT for effective smoothing, obstacle avoidance, and uniform navigation in an indoor environment. We analyze the joint approach symmetrically and applied the proposed method to benchmark datasets and obtained impressive performance.</description><subject>Airports</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>depth estimation</subject><subject>Error reduction</subject><subject>Indoor environments</subject><subject>Indoor navigation</subject><subject>Localization</subject><subject>Methods</subject><subject>Movement</subject><subject>Navigation systems</subject><subject>object detection</subject><subject>Obstacle avoidance</subject><subject>People with disabilities</subject><subject>Public transportation</subject><subject>Robots</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>slam</subject><subject>Unknown environments</subject><subject>Visual impairment</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctqwzAQRUVpoaHNqj9g6LK41dO2liH0EUibRR9bMZLloGBbrmQH0q-vk5SS2cxwuZyZ4SJ0Q_A9YxI_xF1DKCaYEHmGJhTnLC2k5Ocn8yWaxrjBYwkseIYnyMx9o13r2nWy0rEHU9tktvWuhNbYBNoy-XJxgDp5d81Q99BaP8Rk6Q3U7gd659uD6RW6bs-ofEgWbenH9gZbtz44rtFFBXW0079-hT6fHj_mL-ly9byYz5apYRnv0xJMRYyROgeOKaOaUc44z6WkpdUZJrYoMZVWaigzqoW1RWGt0SaHjAmm2RVaHLmlh43qgmsg7JQHpw6CD2sFoXfji0rbQmiecyFzxu1IpdIYQqpKcsFHdWTdHlld8N-Djb3a-CG04_mKCoFpTguaj667o8sEH2Ow1f9WgtU-FHUSCvsFiKt_Rw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Jin, SongGuo</creator><creator>Ahmed, Minhaz Uddin</creator><creator>Kim, Jin Woo</creator><creator>Kim, Yeong Hyeon</creator><creator>Rhee, Phill Kyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation</title><author>Jin, SongGuo ; Ahmed, Minhaz Uddin ; Kim, Jin Woo ; Kim, Yeong Hyeon ; Rhee, Phill Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-dacf1cc9b7a40232b3243447992deb601e8d029e9bad62b5ee88eecbc7a6353b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airports</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>depth estimation</topic><topic>Error reduction</topic><topic>Indoor environments</topic><topic>Indoor navigation</topic><topic>Localization</topic><topic>Methods</topic><topic>Movement</topic><topic>Navigation systems</topic><topic>object detection</topic><topic>Obstacle avoidance</topic><topic>People with disabilities</topic><topic>Public transportation</topic><topic>Robots</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>slam</topic><topic>Unknown environments</topic><topic>Visual impairment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, SongGuo</creatorcontrib><creatorcontrib>Ahmed, Minhaz Uddin</creatorcontrib><creatorcontrib>Kim, Jin Woo</creatorcontrib><creatorcontrib>Kim, Yeong Hyeon</creatorcontrib><creatorcontrib>Rhee, Phill Kyu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, SongGuo</au><au>Ahmed, Minhaz Uddin</au><au>Kim, Jin Woo</au><au>Kim, Yeong Hyeon</au><au>Rhee, Phill Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>119</spage><pages>119-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>People with disabilities (PWD) face a number of challenges such as obstacle avoidance or taking a minimum path to reach a destination while travelling or taking public transport, especially in airports or bus stations. In some cases, PWD, and specifically visually impaired people, have to wait longer to overcome these situations. In order to solve these problems, the computer-vision community has applied a number of techniques that are nonetheless insufficient to handle these situations. In this paper, we propose a visual simultaneous localization and mapping for moving-person tracking (VSLAMMPT) method that can assist PWD in smooth movement by knowing a position in an unknown environment. We applied expected error reduction with active-semisupervised-learning (EER–ASSL)-based person detection to eliminate noisy samples in dynamic environments. After that, we applied VSLAMMPT for effective smoothing, obstacle avoidance, and uniform navigation in an indoor environment. We analyze the joint approach symmetrically and applied the proposed method to benchmark datasets and obtained impressive performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym12010119</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2020-01, Vol.12 (1), p.119
issn 2073-8994
2073-8994
language eng
recordid cdi_proquest_journals_2550272827
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Airports
Algorithms
Cameras
depth estimation
Error reduction
Indoor environments
Indoor navigation
Localization
Methods
Movement
Navigation systems
object detection
Obstacle avoidance
People with disabilities
Public transportation
Robots
Sensors
Simultaneous localization and mapping
slam
Unknown environments
Visual impairment
title Combining Obstacle Avoidance and Visual Simultaneous Localization and Mapping for Indoor Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Obstacle%20Avoidance%20and%20Visual%20Simultaneous%20Localization%20and%20Mapping%20for%20Indoor%20Navigation&rft.jtitle=Symmetry%20(Basel)&rft.au=Jin,%20SongGuo&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=119&rft.pages=119-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym12010119&rft_dat=%3Cproquest_doaj_%3E2550272827%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550272827&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_be85b47459734e02929cc11ff9454459&rfr_iscdi=true