Volumes of Hyperbolic Three-Manifolds Associated with Modular Links

Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2019-10, Vol.11 (10), p.1206
Hauptverfasser: Brandts, Alex, Pinsky, Tali, Silberman, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1206
container_title Symmetry (Basel)
container_volume 11
creator Brandts, Alex
Pinsky, Tali
Silberman, Lior
description Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is always a hyperbolic 3-manifold, and hence has a well-defined volume. We present strong numerical evidence that, in the case of the set of geodesics corresponding to the ideal class group of a real quadratic field, the volume has linear asymptotics in terms of the total length of the geodesics. This is not the case for general sets of geodesics.
doi_str_mv 10.3390/sym11101206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550272031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550272031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-8cde7d6fda3e4206a2fba37ccad8681c738222813b9d4baa9ee2af17a985520d3</originalsourceid><addsrcrecordid>eNpNUEtLw0AYXETBUnvyDyx4lOg-8tg9lqBWSPFSvYYv-6Bbk2zcTZD-e1PqoXOZOQwzwyB0T8kT55I8x2NHKSWUkfwKLRgpeCKkTK8v9C1axXggMzKSpTlZoPLLt1NnIvYWb46DCY1vncK7fTAm2ULvrG91xOsYvXIwGo1_3bjHW6-nFgKuXP8d79CNhTaa1T8v0efry67cJNXH23u5rhLFpBgTobQpdG41cJPOI4HZBnihFGiRC6oKLhhjgvJG6rQBkMYwsLQAKbKMEc2X6OGcOwT_M5k41gc_hX6urFmWEVYwwunsejy7VPAxBmPrIbgOwrGmpD4dVV8cxf8Ag55bBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550272031</pqid></control><display><type>article</type><title>Volumes of Hyperbolic Three-Manifolds Associated with Modular Links</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Brandts, Alex ; Pinsky, Tali ; Silberman, Lior</creator><creatorcontrib>Brandts, Alex ; Pinsky, Tali ; Silberman, Lior</creatorcontrib><description>Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is always a hyperbolic 3-manifold, and hence has a well-defined volume. We present strong numerical evidence that, in the case of the set of geodesics corresponding to the ideal class group of a real quadratic field, the volume has linear asymptotics in terms of the total length of the geodesics. This is not the case for general sets of geodesics.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym11101206</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Fields (mathematics) ; Geodesy ; Manifolds ; Number theory ; Orbits</subject><ispartof>Symmetry (Basel), 2019-10, Vol.11 (10), p.1206</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-8cde7d6fda3e4206a2fba37ccad8681c738222813b9d4baa9ee2af17a985520d3</citedby><cites>FETCH-LOGICAL-c298t-8cde7d6fda3e4206a2fba37ccad8681c738222813b9d4baa9ee2af17a985520d3</cites><orcidid>0000-0002-6747-2382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Brandts, Alex</creatorcontrib><creatorcontrib>Pinsky, Tali</creatorcontrib><creatorcontrib>Silberman, Lior</creatorcontrib><title>Volumes of Hyperbolic Three-Manifolds Associated with Modular Links</title><title>Symmetry (Basel)</title><description>Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is always a hyperbolic 3-manifold, and hence has a well-defined volume. We present strong numerical evidence that, in the case of the set of geodesics corresponding to the ideal class group of a real quadratic field, the volume has linear asymptotics in terms of the total length of the geodesics. This is not the case for general sets of geodesics.</description><subject>Fields (mathematics)</subject><subject>Geodesy</subject><subject>Manifolds</subject><subject>Number theory</subject><subject>Orbits</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUEtLw0AYXETBUnvyDyx4lOg-8tg9lqBWSPFSvYYv-6Bbk2zcTZD-e1PqoXOZOQwzwyB0T8kT55I8x2NHKSWUkfwKLRgpeCKkTK8v9C1axXggMzKSpTlZoPLLt1NnIvYWb46DCY1vncK7fTAm2ULvrG91xOsYvXIwGo1_3bjHW6-nFgKuXP8d79CNhTaa1T8v0efry67cJNXH23u5rhLFpBgTobQpdG41cJPOI4HZBnihFGiRC6oKLhhjgvJG6rQBkMYwsLQAKbKMEc2X6OGcOwT_M5k41gc_hX6urFmWEVYwwunsejy7VPAxBmPrIbgOwrGmpD4dVV8cxf8Ag55bBQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Brandts, Alex</creator><creator>Pinsky, Tali</creator><creator>Silberman, Lior</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6747-2382</orcidid></search><sort><creationdate>20191001</creationdate><title>Volumes of Hyperbolic Three-Manifolds Associated with Modular Links</title><author>Brandts, Alex ; Pinsky, Tali ; Silberman, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-8cde7d6fda3e4206a2fba37ccad8681c738222813b9d4baa9ee2af17a985520d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fields (mathematics)</topic><topic>Geodesy</topic><topic>Manifolds</topic><topic>Number theory</topic><topic>Orbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandts, Alex</creatorcontrib><creatorcontrib>Pinsky, Tali</creatorcontrib><creatorcontrib>Silberman, Lior</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandts, Alex</au><au>Pinsky, Tali</au><au>Silberman, Lior</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volumes of Hyperbolic Three-Manifolds Associated with Modular Links</atitle><jtitle>Symmetry (Basel)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>11</volume><issue>10</issue><spage>1206</spage><pages>1206-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is always a hyperbolic 3-manifold, and hence has a well-defined volume. We present strong numerical evidence that, in the case of the set of geodesics corresponding to the ideal class group of a real quadratic field, the volume has linear asymptotics in terms of the total length of the geodesics. This is not the case for general sets of geodesics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym11101206</doi><orcidid>https://orcid.org/0000-0002-6747-2382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2019-10, Vol.11 (10), p.1206
issn 2073-8994
2073-8994
language eng
recordid cdi_proquest_journals_2550272031
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Fields (mathematics)
Geodesy
Manifolds
Number theory
Orbits
title Volumes of Hyperbolic Three-Manifolds Associated with Modular Links
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T12%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volumes%20of%20Hyperbolic%20Three-Manifolds%20Associated%20with%20Modular%20Links&rft.jtitle=Symmetry%20(Basel)&rft.au=Brandts,%20Alex&rft.date=2019-10-01&rft.volume=11&rft.issue=10&rft.spage=1206&rft.pages=1206-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym11101206&rft_dat=%3Cproquest_cross%3E2550272031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550272031&rft_id=info:pmid/&rfr_iscdi=true