m-Polar ( α , β ) -Fuzzy Ideals in BCK/BCI-Algebras
Multi-polar vagueness in data plays a prominent role in several areas of the sciences. In recent years, the thought of m-polar fuzzy sets has captured the attention of numerous analysts, and research in this area has escalated in the past four years. Hybrid models of fuzzy sets have already been app...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2019-01, Vol.11 (1), p.44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Symmetry (Basel) |
container_volume | 11 |
creator | Al-Masarwah, Anas Ahmad, Abd Ghafur |
description | Multi-polar vagueness in data plays a prominent role in several areas of the sciences. In recent years, the thought of m-polar fuzzy sets has captured the attention of numerous analysts, and research in this area has escalated in the past four years. Hybrid models of fuzzy sets have already been applied to many algebraic structures, such as B C K / B C I -algebras, lie algebras, groups, and symmetric groups. A symmetry of the algebraic structure, mathematically an automorphism, is a mapping of the algebraic structure onto itself that preserves the structure. This paper focuses on combining the concepts of m-polar fuzzy sets and m-polar fuzzy points to introduce a new notion called m-polar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. The defined notion is a generalization of fuzzy ideals, bipolar fuzzy ideals, ( α , β ) -fuzzy ideals, and bipolar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. We describe the characterization of m-polar ( ∈ , ∈ ∨ q ) -fuzzy ideals in B C K / B C I -algebras by level cut subsets. Moreover, we define m-polar ( ∈ , ∈ ∨ q ) -fuzzy commutative ideals and explore some pertinent properties. |
doi_str_mv | 10.3390/sym11010044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550258272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550258272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-77e4bc9a13bcb87839ca7ffcd8991e1a9f4dbea787d49eb93eab01f84d1aced23</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWGpXvkDAjaKxySQxybIdWh0s6ELXQ36lZaZTk85i-lb6IH0mp9RFz-YeOB_3Xg4A1wQ_UqrwOHU1IZhgzNgZGGRYUCSVYucn_hKMUlrhXhxz9oQHgNfoval0hLdw_wMf4P4X3kE0b3e7DhbO6yrB5RpO89fxNC_QpPryJup0BS5CH_nR_xyCz_nsI39Bi7fnIp8skM2U3CIhPDNWaUKNNVJIqqwWIVjX_0I80SowZ7wWUjimvFHUa4NJkMwRbb3L6BDcHPduYvPd-rQtV00b1_3JMuMcZ1xm4kDdHykbm5SiD-UmLmsdu5Lg8lBNeVIN_QNip1Sl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550258272</pqid></control><display><type>article</type><title>m-Polar ( α , β ) -Fuzzy Ideals in BCK/BCI-Algebras</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Al-Masarwah, Anas ; Ahmad, Abd Ghafur</creator><creatorcontrib>Al-Masarwah, Anas ; Ahmad, Abd Ghafur</creatorcontrib><description>Multi-polar vagueness in data plays a prominent role in several areas of the sciences. In recent years, the thought of m-polar fuzzy sets has captured the attention of numerous analysts, and research in this area has escalated in the past four years. Hybrid models of fuzzy sets have already been applied to many algebraic structures, such as B C K / B C I -algebras, lie algebras, groups, and symmetric groups. A symmetry of the algebraic structure, mathematically an automorphism, is a mapping of the algebraic structure onto itself that preserves the structure. This paper focuses on combining the concepts of m-polar fuzzy sets and m-polar fuzzy points to introduce a new notion called m-polar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. The defined notion is a generalization of fuzzy ideals, bipolar fuzzy ideals, ( α , β ) -fuzzy ideals, and bipolar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. We describe the characterization of m-polar ( ∈ , ∈ ∨ q ) -fuzzy ideals in B C K / B C I -algebras by level cut subsets. Moreover, we define m-polar ( ∈ , ∈ ∨ q ) -fuzzy commutative ideals and explore some pertinent properties.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym11010044</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Automorphisms ; Fuzzy sets ; Group theory ; Lie groups ; Neurosciences ; Set theory ; Symmetry</subject><ispartof>Symmetry (Basel), 2019-01, Vol.11 (1), p.44</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-77e4bc9a13bcb87839ca7ffcd8991e1a9f4dbea787d49eb93eab01f84d1aced23</citedby><cites>FETCH-LOGICAL-c298t-77e4bc9a13bcb87839ca7ffcd8991e1a9f4dbea787d49eb93eab01f84d1aced23</cites><orcidid>0000-0002-8899-6476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Al-Masarwah, Anas</creatorcontrib><creatorcontrib>Ahmad, Abd Ghafur</creatorcontrib><title>m-Polar ( α , β ) -Fuzzy Ideals in BCK/BCI-Algebras</title><title>Symmetry (Basel)</title><description>Multi-polar vagueness in data plays a prominent role in several areas of the sciences. In recent years, the thought of m-polar fuzzy sets has captured the attention of numerous analysts, and research in this area has escalated in the past four years. Hybrid models of fuzzy sets have already been applied to many algebraic structures, such as B C K / B C I -algebras, lie algebras, groups, and symmetric groups. A symmetry of the algebraic structure, mathematically an automorphism, is a mapping of the algebraic structure onto itself that preserves the structure. This paper focuses on combining the concepts of m-polar fuzzy sets and m-polar fuzzy points to introduce a new notion called m-polar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. The defined notion is a generalization of fuzzy ideals, bipolar fuzzy ideals, ( α , β ) -fuzzy ideals, and bipolar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. We describe the characterization of m-polar ( ∈ , ∈ ∨ q ) -fuzzy ideals in B C K / B C I -algebras by level cut subsets. Moreover, we define m-polar ( ∈ , ∈ ∨ q ) -fuzzy commutative ideals and explore some pertinent properties.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Fuzzy sets</subject><subject>Group theory</subject><subject>Lie groups</subject><subject>Neurosciences</subject><subject>Set theory</subject><subject>Symmetry</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1KAzEUhYMoWGpXvkDAjaKxySQxybIdWh0s6ELXQ36lZaZTk85i-lb6IH0mp9RFz-YeOB_3Xg4A1wQ_UqrwOHU1IZhgzNgZGGRYUCSVYucn_hKMUlrhXhxz9oQHgNfoval0hLdw_wMf4P4X3kE0b3e7DhbO6yrB5RpO89fxNC_QpPryJup0BS5CH_nR_xyCz_nsI39Bi7fnIp8skM2U3CIhPDNWaUKNNVJIqqwWIVjX_0I80SowZ7wWUjimvFHUa4NJkMwRbb3L6BDcHPduYvPd-rQtV00b1_3JMuMcZ1xm4kDdHykbm5SiD-UmLmsdu5Lg8lBNeVIN_QNip1Sl</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Al-Masarwah, Anas</creator><creator>Ahmad, Abd Ghafur</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8899-6476</orcidid></search><sort><creationdate>20190101</creationdate><title>m-Polar ( α , β ) -Fuzzy Ideals in BCK/BCI-Algebras</title><author>Al-Masarwah, Anas ; Ahmad, Abd Ghafur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-77e4bc9a13bcb87839ca7ffcd8991e1a9f4dbea787d49eb93eab01f84d1aced23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Fuzzy sets</topic><topic>Group theory</topic><topic>Lie groups</topic><topic>Neurosciences</topic><topic>Set theory</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Masarwah, Anas</creatorcontrib><creatorcontrib>Ahmad, Abd Ghafur</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Masarwah, Anas</au><au>Ahmad, Abd Ghafur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>m-Polar ( α , β ) -Fuzzy Ideals in BCK/BCI-Algebras</atitle><jtitle>Symmetry (Basel)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><spage>44</spage><pages>44-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Multi-polar vagueness in data plays a prominent role in several areas of the sciences. In recent years, the thought of m-polar fuzzy sets has captured the attention of numerous analysts, and research in this area has escalated in the past four years. Hybrid models of fuzzy sets have already been applied to many algebraic structures, such as B C K / B C I -algebras, lie algebras, groups, and symmetric groups. A symmetry of the algebraic structure, mathematically an automorphism, is a mapping of the algebraic structure onto itself that preserves the structure. This paper focuses on combining the concepts of m-polar fuzzy sets and m-polar fuzzy points to introduce a new notion called m-polar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. The defined notion is a generalization of fuzzy ideals, bipolar fuzzy ideals, ( α , β ) -fuzzy ideals, and bipolar ( α , β ) -fuzzy ideals in B C K / B C I -algebras. We describe the characterization of m-polar ( ∈ , ∈ ∨ q ) -fuzzy ideals in B C K / B C I -algebras by level cut subsets. Moreover, we define m-polar ( ∈ , ∈ ∨ q ) -fuzzy commutative ideals and explore some pertinent properties.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym11010044</doi><orcidid>https://orcid.org/0000-0002-8899-6476</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2019-01, Vol.11 (1), p.44 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_proquest_journals_2550258272 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Automorphisms Fuzzy sets Group theory Lie groups Neurosciences Set theory Symmetry |
title | m-Polar ( α , β ) -Fuzzy Ideals in BCK/BCI-Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=m-Polar%20(%20%CE%B1%20,%20%CE%B2%20)%20-Fuzzy%20Ideals%20in%20BCK/BCI-Algebras&rft.jtitle=Symmetry%20(Basel)&rft.au=Al-Masarwah,%20Anas&rft.date=2019-01-01&rft.volume=11&rft.issue=1&rft.spage=44&rft.pages=44-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym11010044&rft_dat=%3Cproquest_cross%3E2550258272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550258272&rft_id=info:pmid/&rfr_iscdi=true |