A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space
This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of s...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2020-10, Vol.12 (10), p.1696 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1696 |
container_title | Symmetry (Basel) |
container_volume | 12 |
creator | Mashford, John |
description | This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented. |
doi_str_mv | 10.3390/sym12101696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550254007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550254007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EElXpxB-wxIgCZ8d27bGKClRKxQDMkePYUtrUDnYCKr-eoDL0Ld8b3t3pHkK3BB7yXMFjOh4IJUCEEhdoRmGZZ1Ipdnnmr9EipR1M4sCZgBlar_Bbb80QdYcL3ZmxGxN2IeIyROuHH7zxXzq22g94a3Uao004eLxt_T58p307TWtjb9CV012yi3_O0cfT-r14ycrX502xKjNDlRwyxcAKogXTlEjGrWuk1MvaOZE3DYMG6gmU1o4AV0xSLgzQRtcMZO2EIPkc3Z329jF8jjYN1S6M0U8nK8o5UM5genWO7k8pE0NK0bqqj-1Bx2NFoPqrqjqrKv8FwSRa3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550254007</pqid></control><display><type>article</type><title>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mashford, John</creator><creatorcontrib>Mashford, John</creatorcontrib><description>This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym12101696</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Calculus ; Convolution ; Fourier transforms ; Integral equations ; Invariants ; Minkowski space ; Quantum field theory ; Spectra</subject><ispartof>Symmetry (Basel), 2020-10, Vol.12 (10), p.1696</ispartof><rights>2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</citedby><cites>FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</cites><orcidid>0000-0001-6100-031X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mashford, John</creatorcontrib><title>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</title><title>Symmetry (Basel)</title><description>This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented.</description><subject>Calculus</subject><subject>Convolution</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Invariants</subject><subject>Minkowski space</subject><subject>Quantum field theory</subject><subject>Spectra</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkDFPwzAQhS0EElXpxB-wxIgCZ8d27bGKClRKxQDMkePYUtrUDnYCKr-eoDL0Ld8b3t3pHkK3BB7yXMFjOh4IJUCEEhdoRmGZZ1Ipdnnmr9EipR1M4sCZgBlar_Bbb80QdYcL3ZmxGxN2IeIyROuHH7zxXzq22g94a3Uao004eLxt_T58p307TWtjb9CV012yi3_O0cfT-r14ycrX502xKjNDlRwyxcAKogXTlEjGrWuk1MvaOZE3DYMG6gmU1o4AV0xSLgzQRtcMZO2EIPkc3Z329jF8jjYN1S6M0U8nK8o5UM5genWO7k8pE0NK0bqqj-1Bx2NFoPqrqjqrKv8FwSRa3g</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Mashford, John</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6100-031X</orcidid></search><sort><creationdate>20201001</creationdate><title>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</title><author>Mashford, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calculus</topic><topic>Convolution</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Invariants</topic><topic>Minkowski space</topic><topic>Quantum field theory</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashford, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashford, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>12</volume><issue>10</issue><spage>1696</spage><pages>1696-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym12101696</doi><orcidid>https://orcid.org/0000-0001-6100-031X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2020-10, Vol.12 (10), p.1696 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_proquest_journals_2550254007 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Calculus Convolution Fourier transforms Integral equations Invariants Minkowski space Quantum field theory Spectra |
title | A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spectral%20Calculus%20for%20Lorentz%20Invariant%20Measures%20on%20Minkowski%20Space&rft.jtitle=Symmetry%20(Basel)&rft.au=Mashford,%20John&rft.date=2020-10-01&rft.volume=12&rft.issue=10&rft.spage=1696&rft.pages=1696-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym12101696&rft_dat=%3Cproquest_cross%3E2550254007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550254007&rft_id=info:pmid/&rfr_iscdi=true |