A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space

This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-10, Vol.12 (10), p.1696
1. Verfasser: Mashford, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1696
container_title Symmetry (Basel)
container_volume 12
creator Mashford, John
description This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented.
doi_str_mv 10.3390/sym12101696
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550254007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550254007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EElXpxB-wxIgCZ8d27bGKClRKxQDMkePYUtrUDnYCKr-eoDL0Ld8b3t3pHkK3BB7yXMFjOh4IJUCEEhdoRmGZZ1Ipdnnmr9EipR1M4sCZgBlar_Bbb80QdYcL3ZmxGxN2IeIyROuHH7zxXzq22g94a3Uao004eLxt_T58p307TWtjb9CV012yi3_O0cfT-r14ycrX502xKjNDlRwyxcAKogXTlEjGrWuk1MvaOZE3DYMG6gmU1o4AV0xSLgzQRtcMZO2EIPkc3Z329jF8jjYN1S6M0U8nK8o5UM5genWO7k8pE0NK0bqqj-1Bx2NFoPqrqjqrKv8FwSRa3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550254007</pqid></control><display><type>article</type><title>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mashford, John</creator><creatorcontrib>Mashford, John</creatorcontrib><description>This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym12101696</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Calculus ; Convolution ; Fourier transforms ; Integral equations ; Invariants ; Minkowski space ; Quantum field theory ; Spectra</subject><ispartof>Symmetry (Basel), 2020-10, Vol.12 (10), p.1696</ispartof><rights>2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</citedby><cites>FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</cites><orcidid>0000-0001-6100-031X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mashford, John</creatorcontrib><title>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</title><title>Symmetry (Basel)</title><description>This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented.</description><subject>Calculus</subject><subject>Convolution</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Invariants</subject><subject>Minkowski space</subject><subject>Quantum field theory</subject><subject>Spectra</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkDFPwzAQhS0EElXpxB-wxIgCZ8d27bGKClRKxQDMkePYUtrUDnYCKr-eoDL0Ld8b3t3pHkK3BB7yXMFjOh4IJUCEEhdoRmGZZ1Ipdnnmr9EipR1M4sCZgBlar_Bbb80QdYcL3ZmxGxN2IeIyROuHH7zxXzq22g94a3Uao004eLxt_T58p307TWtjb9CV012yi3_O0cfT-r14ycrX502xKjNDlRwyxcAKogXTlEjGrWuk1MvaOZE3DYMG6gmU1o4AV0xSLgzQRtcMZO2EIPkc3Z329jF8jjYN1S6M0U8nK8o5UM5genWO7k8pE0NK0bqqj-1Bx2NFoPqrqjqrKv8FwSRa3g</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Mashford, John</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6100-031X</orcidid></search><sort><creationdate>20201001</creationdate><title>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</title><author>Mashford, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-940e61a64a21845efd88a7bff63dd40d0bdd422bf105948256c02dab408bf6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calculus</topic><topic>Convolution</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Invariants</topic><topic>Minkowski space</topic><topic>Quantum field theory</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashford, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashford, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>12</volume><issue>10</issue><spage>1696</spage><pages>1696-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant Borel complex measures on Minkowski space, thereby enabling one to compute their densities with respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide class of cases. Techniques for their computation in terms of their spectral representation are presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym12101696</doi><orcidid>https://orcid.org/0000-0001-6100-031X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2020-10, Vol.12 (10), p.1696
issn 2073-8994
2073-8994
language eng
recordid cdi_proquest_journals_2550254007
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Calculus
Convolution
Fourier transforms
Integral equations
Invariants
Minkowski space
Quantum field theory
Spectra
title A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spectral%20Calculus%20for%20Lorentz%20Invariant%20Measures%20on%20Minkowski%20Space&rft.jtitle=Symmetry%20(Basel)&rft.au=Mashford,%20John&rft.date=2020-10-01&rft.volume=12&rft.issue=10&rft.spage=1696&rft.pages=1696-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym12101696&rft_dat=%3Cproquest_cross%3E2550254007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550254007&rft_id=info:pmid/&rfr_iscdi=true