Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology
This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosol...
Gespeichert in:
Veröffentlicht in: | Processes 2019, Vol.7 (10), p.715 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 715 |
container_title | Processes |
container_volume | 7 |
creator | Nurfahmi Mofijur, M. Ong, Hwai Chyuan Jan, Badrul Mohamed Kusumo, Fitranto Sebayang, Abdi Hanra Husin, Hazlina Silitonga, Arridina Susan Mahlia, Teuku Meurah Indra Rahman, S. M. Ashrafur |
description | This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol. |
doi_str_mv | 10.3390/pr7100715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550243420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550243420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</originalsourceid><addsrcrecordid>eNpNkE1Lw0AYhBdRsGgP_oMFTx6i-5Vs9mhLq0Klxdpz2OxHuyXJxt3kUC_-dVMr4lzegfdhBgaAG4zuKRXooQ0cI8RxegZGhBCeCI75-T9_CcYx7tEggWmeZiPwtQpe96pzvoGDVSZGKBsNl23navcpfx7ewrWvnIYT5023k42voA2-hrO67Q5wHnrXwUnfqJ2JR3glqxouXQU30TVb-GZi65to4LoPVioDX4cQr33lt4drcGFlFc34916BzXz2Pn1OFsunl-njIlFEkC4pFc5KKQkTUolcc2WU4Uhoa7S2DGU5z62lTNoSKSZTwkWmpcJM0xyVWGT0CtyectvgP3oTu2Lv-9AMlQVJU0QYZQQN1N2JUsHHGIwt2uBqGQ4FRsVx4uJvYvoNlCpwWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550243420</pqid></control><display><type>article</type><title>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nurfahmi ; Mofijur, M. ; Ong, Hwai Chyuan ; Jan, Badrul Mohamed ; Kusumo, Fitranto ; Sebayang, Abdi Hanra ; Husin, Hazlina ; Silitonga, Arridina Susan ; Mahlia, Teuku Meurah Indra ; Rahman, S. M. Ashrafur</creator><creatorcontrib>Nurfahmi ; Mofijur, M. ; Ong, Hwai Chyuan ; Jan, Badrul Mohamed ; Kusumo, Fitranto ; Sebayang, Abdi Hanra ; Husin, Hazlina ; Silitonga, Arridina Susan ; Mahlia, Teuku Meurah Indra ; Rahman, S. M. Ashrafur</creatorcontrib><description>This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr7100715</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Alternative fuels ; Biodiesel fuels ; Biofuels ; Biomass ; Burning ; Burning time ; Calorific value ; Carbon ; Cellulose ; Climate change ; Distillation ; Emissions ; Energy storage ; Ethanol ; Fermentation ; Fossil fuels ; Greenhouse gases ; Hydrolysis ; Lignin ; Lignocellulose ; Optimization ; Palm oil ; Raw materials ; Renewable resources ; Response surface methodology ; Solid fuels ; Solvents ; Stearic acid ; Sugar ; Vegetable oils</subject><ispartof>Processes, 2019, Vol.7 (10), p.715</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</citedby><cites>FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</cites><orcidid>0000-0002-7773-1819 ; 0000-0002-6731-4800 ; 0000-0002-0065-8203 ; 0000-0002-6264-1132 ; 0000-0002-6985-929X ; 0000-0002-0810-7625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Nurfahmi</creatorcontrib><creatorcontrib>Mofijur, M.</creatorcontrib><creatorcontrib>Ong, Hwai Chyuan</creatorcontrib><creatorcontrib>Jan, Badrul Mohamed</creatorcontrib><creatorcontrib>Kusumo, Fitranto</creatorcontrib><creatorcontrib>Sebayang, Abdi Hanra</creatorcontrib><creatorcontrib>Husin, Hazlina</creatorcontrib><creatorcontrib>Silitonga, Arridina Susan</creatorcontrib><creatorcontrib>Mahlia, Teuku Meurah Indra</creatorcontrib><creatorcontrib>Rahman, S. M. Ashrafur</creatorcontrib><title>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</title><title>Processes</title><description>This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol.</description><subject>Alternative energy sources</subject><subject>Alternative fuels</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Burning</subject><subject>Burning time</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Cellulose</subject><subject>Climate change</subject><subject>Distillation</subject><subject>Emissions</subject><subject>Energy storage</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Fossil fuels</subject><subject>Greenhouse gases</subject><subject>Hydrolysis</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Optimization</subject><subject>Palm oil</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Response surface methodology</subject><subject>Solid fuels</subject><subject>Solvents</subject><subject>Stearic acid</subject><subject>Sugar</subject><subject>Vegetable oils</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1Lw0AYhBdRsGgP_oMFTx6i-5Vs9mhLq0Klxdpz2OxHuyXJxt3kUC_-dVMr4lzegfdhBgaAG4zuKRXooQ0cI8RxegZGhBCeCI75-T9_CcYx7tEggWmeZiPwtQpe96pzvoGDVSZGKBsNl23navcpfx7ewrWvnIYT5023k42voA2-hrO67Q5wHnrXwUnfqJ2JR3glqxouXQU30TVb-GZi65to4LoPVioDX4cQr33lt4drcGFlFc34916BzXz2Pn1OFsunl-njIlFEkC4pFc5KKQkTUolcc2WU4Uhoa7S2DGU5z62lTNoSKSZTwkWmpcJM0xyVWGT0CtyectvgP3oTu2Lv-9AMlQVJU0QYZQQN1N2JUsHHGIwt2uBqGQ4FRsVx4uJvYvoNlCpwWw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nurfahmi</creator><creator>Mofijur, M.</creator><creator>Ong, Hwai Chyuan</creator><creator>Jan, Badrul Mohamed</creator><creator>Kusumo, Fitranto</creator><creator>Sebayang, Abdi Hanra</creator><creator>Husin, Hazlina</creator><creator>Silitonga, Arridina Susan</creator><creator>Mahlia, Teuku Meurah Indra</creator><creator>Rahman, S. M. Ashrafur</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7773-1819</orcidid><orcidid>https://orcid.org/0000-0002-6731-4800</orcidid><orcidid>https://orcid.org/0000-0002-0065-8203</orcidid><orcidid>https://orcid.org/0000-0002-6264-1132</orcidid><orcidid>https://orcid.org/0000-0002-6985-929X</orcidid><orcidid>https://orcid.org/0000-0002-0810-7625</orcidid></search><sort><creationdate>2019</creationdate><title>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</title><author>Nurfahmi ; Mofijur, M. ; Ong, Hwai Chyuan ; Jan, Badrul Mohamed ; Kusumo, Fitranto ; Sebayang, Abdi Hanra ; Husin, Hazlina ; Silitonga, Arridina Susan ; Mahlia, Teuku Meurah Indra ; Rahman, S. M. Ashrafur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy sources</topic><topic>Alternative fuels</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Burning</topic><topic>Burning time</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Cellulose</topic><topic>Climate change</topic><topic>Distillation</topic><topic>Emissions</topic><topic>Energy storage</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Fossil fuels</topic><topic>Greenhouse gases</topic><topic>Hydrolysis</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Optimization</topic><topic>Palm oil</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Response surface methodology</topic><topic>Solid fuels</topic><topic>Solvents</topic><topic>Stearic acid</topic><topic>Sugar</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurfahmi</creatorcontrib><creatorcontrib>Mofijur, M.</creatorcontrib><creatorcontrib>Ong, Hwai Chyuan</creatorcontrib><creatorcontrib>Jan, Badrul Mohamed</creatorcontrib><creatorcontrib>Kusumo, Fitranto</creatorcontrib><creatorcontrib>Sebayang, Abdi Hanra</creatorcontrib><creatorcontrib>Husin, Hazlina</creatorcontrib><creatorcontrib>Silitonga, Arridina Susan</creatorcontrib><creatorcontrib>Mahlia, Teuku Meurah Indra</creatorcontrib><creatorcontrib>Rahman, S. M. Ashrafur</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurfahmi</au><au>Mofijur, M.</au><au>Ong, Hwai Chyuan</au><au>Jan, Badrul Mohamed</au><au>Kusumo, Fitranto</au><au>Sebayang, Abdi Hanra</au><au>Husin, Hazlina</au><au>Silitonga, Arridina Susan</au><au>Mahlia, Teuku Meurah Indra</au><au>Rahman, S. M. Ashrafur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</atitle><jtitle>Processes</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>10</issue><spage>715</spage><pages>715-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr7100715</doi><orcidid>https://orcid.org/0000-0002-7773-1819</orcidid><orcidid>https://orcid.org/0000-0002-6731-4800</orcidid><orcidid>https://orcid.org/0000-0002-0065-8203</orcidid><orcidid>https://orcid.org/0000-0002-6264-1132</orcidid><orcidid>https://orcid.org/0000-0002-6985-929X</orcidid><orcidid>https://orcid.org/0000-0002-0810-7625</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2019, Vol.7 (10), p.715 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2550243420 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Alternative energy sources Alternative fuels Biodiesel fuels Biofuels Biomass Burning Burning time Calorific value Carbon Cellulose Climate change Distillation Emissions Energy storage Ethanol Fermentation Fossil fuels Greenhouse gases Hydrolysis Lignin Lignocellulose Optimization Palm oil Raw materials Renewable resources Response surface methodology Solid fuels Solvents Stearic acid Sugar Vegetable oils |
title | Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20Process%20and%20Optimization%20of%20Solid%20Bioethanol%20from%20Empty%20Fruit%20Bunches%20of%20Palm%20Oil%20Using%20Response%20Surface%20Methodology&rft.jtitle=Processes&rft.au=Nurfahmi&rft.date=2019&rft.volume=7&rft.issue=10&rft.spage=715&rft.pages=715-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr7100715&rft_dat=%3Cproquest_cross%3E2550243420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550243420&rft_id=info:pmid/&rfr_iscdi=true |