Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology

This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2019, Vol.7 (10), p.715
Hauptverfasser: Nurfahmi, Mofijur, M., Ong, Hwai Chyuan, Jan, Badrul Mohamed, Kusumo, Fitranto, Sebayang, Abdi Hanra, Husin, Hazlina, Silitonga, Arridina Susan, Mahlia, Teuku Meurah Indra, Rahman, S. M. Ashrafur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 715
container_title Processes
container_volume 7
creator Nurfahmi
Mofijur, M.
Ong, Hwai Chyuan
Jan, Badrul Mohamed
Kusumo, Fitranto
Sebayang, Abdi Hanra
Husin, Hazlina
Silitonga, Arridina Susan
Mahlia, Teuku Meurah Indra
Rahman, S. M. Ashrafur
description This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol.
doi_str_mv 10.3390/pr7100715
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550243420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550243420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</originalsourceid><addsrcrecordid>eNpNkE1Lw0AYhBdRsGgP_oMFTx6i-5Vs9mhLq0Klxdpz2OxHuyXJxt3kUC_-dVMr4lzegfdhBgaAG4zuKRXooQ0cI8RxegZGhBCeCI75-T9_CcYx7tEggWmeZiPwtQpe96pzvoGDVSZGKBsNl23navcpfx7ewrWvnIYT5023k42voA2-hrO67Q5wHnrXwUnfqJ2JR3glqxouXQU30TVb-GZi65to4LoPVioDX4cQr33lt4drcGFlFc34916BzXz2Pn1OFsunl-njIlFEkC4pFc5KKQkTUolcc2WU4Uhoa7S2DGU5z62lTNoSKSZTwkWmpcJM0xyVWGT0CtyectvgP3oTu2Lv-9AMlQVJU0QYZQQN1N2JUsHHGIwt2uBqGQ4FRsVx4uJvYvoNlCpwWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550243420</pqid></control><display><type>article</type><title>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nurfahmi ; Mofijur, M. ; Ong, Hwai Chyuan ; Jan, Badrul Mohamed ; Kusumo, Fitranto ; Sebayang, Abdi Hanra ; Husin, Hazlina ; Silitonga, Arridina Susan ; Mahlia, Teuku Meurah Indra ; Rahman, S. M. Ashrafur</creator><creatorcontrib>Nurfahmi ; Mofijur, M. ; Ong, Hwai Chyuan ; Jan, Badrul Mohamed ; Kusumo, Fitranto ; Sebayang, Abdi Hanra ; Husin, Hazlina ; Silitonga, Arridina Susan ; Mahlia, Teuku Meurah Indra ; Rahman, S. M. Ashrafur</creatorcontrib><description>This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr7100715</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Alternative fuels ; Biodiesel fuels ; Biofuels ; Biomass ; Burning ; Burning time ; Calorific value ; Carbon ; Cellulose ; Climate change ; Distillation ; Emissions ; Energy storage ; Ethanol ; Fermentation ; Fossil fuels ; Greenhouse gases ; Hydrolysis ; Lignin ; Lignocellulose ; Optimization ; Palm oil ; Raw materials ; Renewable resources ; Response surface methodology ; Solid fuels ; Solvents ; Stearic acid ; Sugar ; Vegetable oils</subject><ispartof>Processes, 2019, Vol.7 (10), p.715</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</citedby><cites>FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</cites><orcidid>0000-0002-7773-1819 ; 0000-0002-6731-4800 ; 0000-0002-0065-8203 ; 0000-0002-6264-1132 ; 0000-0002-6985-929X ; 0000-0002-0810-7625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Nurfahmi</creatorcontrib><creatorcontrib>Mofijur, M.</creatorcontrib><creatorcontrib>Ong, Hwai Chyuan</creatorcontrib><creatorcontrib>Jan, Badrul Mohamed</creatorcontrib><creatorcontrib>Kusumo, Fitranto</creatorcontrib><creatorcontrib>Sebayang, Abdi Hanra</creatorcontrib><creatorcontrib>Husin, Hazlina</creatorcontrib><creatorcontrib>Silitonga, Arridina Susan</creatorcontrib><creatorcontrib>Mahlia, Teuku Meurah Indra</creatorcontrib><creatorcontrib>Rahman, S. M. Ashrafur</creatorcontrib><title>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</title><title>Processes</title><description>This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol.</description><subject>Alternative energy sources</subject><subject>Alternative fuels</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Burning</subject><subject>Burning time</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Cellulose</subject><subject>Climate change</subject><subject>Distillation</subject><subject>Emissions</subject><subject>Energy storage</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Fossil fuels</subject><subject>Greenhouse gases</subject><subject>Hydrolysis</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Optimization</subject><subject>Palm oil</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Response surface methodology</subject><subject>Solid fuels</subject><subject>Solvents</subject><subject>Stearic acid</subject><subject>Sugar</subject><subject>Vegetable oils</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1Lw0AYhBdRsGgP_oMFTx6i-5Vs9mhLq0Klxdpz2OxHuyXJxt3kUC_-dVMr4lzegfdhBgaAG4zuKRXooQ0cI8RxegZGhBCeCI75-T9_CcYx7tEggWmeZiPwtQpe96pzvoGDVSZGKBsNl23navcpfx7ewrWvnIYT5023k42voA2-hrO67Q5wHnrXwUnfqJ2JR3glqxouXQU30TVb-GZi65to4LoPVioDX4cQr33lt4drcGFlFc34916BzXz2Pn1OFsunl-njIlFEkC4pFc5KKQkTUolcc2WU4Uhoa7S2DGU5z62lTNoSKSZTwkWmpcJM0xyVWGT0CtyectvgP3oTu2Lv-9AMlQVJU0QYZQQN1N2JUsHHGIwt2uBqGQ4FRsVx4uJvYvoNlCpwWw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nurfahmi</creator><creator>Mofijur, M.</creator><creator>Ong, Hwai Chyuan</creator><creator>Jan, Badrul Mohamed</creator><creator>Kusumo, Fitranto</creator><creator>Sebayang, Abdi Hanra</creator><creator>Husin, Hazlina</creator><creator>Silitonga, Arridina Susan</creator><creator>Mahlia, Teuku Meurah Indra</creator><creator>Rahman, S. M. Ashrafur</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7773-1819</orcidid><orcidid>https://orcid.org/0000-0002-6731-4800</orcidid><orcidid>https://orcid.org/0000-0002-0065-8203</orcidid><orcidid>https://orcid.org/0000-0002-6264-1132</orcidid><orcidid>https://orcid.org/0000-0002-6985-929X</orcidid><orcidid>https://orcid.org/0000-0002-0810-7625</orcidid></search><sort><creationdate>2019</creationdate><title>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</title><author>Nurfahmi ; Mofijur, M. ; Ong, Hwai Chyuan ; Jan, Badrul Mohamed ; Kusumo, Fitranto ; Sebayang, Abdi Hanra ; Husin, Hazlina ; Silitonga, Arridina Susan ; Mahlia, Teuku Meurah Indra ; Rahman, S. M. Ashrafur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-bc16baa249ac98d7cece709dfeddf406878ff34afb0c4a52796dac14d380b1963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy sources</topic><topic>Alternative fuels</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Burning</topic><topic>Burning time</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Cellulose</topic><topic>Climate change</topic><topic>Distillation</topic><topic>Emissions</topic><topic>Energy storage</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Fossil fuels</topic><topic>Greenhouse gases</topic><topic>Hydrolysis</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Optimization</topic><topic>Palm oil</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Response surface methodology</topic><topic>Solid fuels</topic><topic>Solvents</topic><topic>Stearic acid</topic><topic>Sugar</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurfahmi</creatorcontrib><creatorcontrib>Mofijur, M.</creatorcontrib><creatorcontrib>Ong, Hwai Chyuan</creatorcontrib><creatorcontrib>Jan, Badrul Mohamed</creatorcontrib><creatorcontrib>Kusumo, Fitranto</creatorcontrib><creatorcontrib>Sebayang, Abdi Hanra</creatorcontrib><creatorcontrib>Husin, Hazlina</creatorcontrib><creatorcontrib>Silitonga, Arridina Susan</creatorcontrib><creatorcontrib>Mahlia, Teuku Meurah Indra</creatorcontrib><creatorcontrib>Rahman, S. M. Ashrafur</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurfahmi</au><au>Mofijur, M.</au><au>Ong, Hwai Chyuan</au><au>Jan, Badrul Mohamed</au><au>Kusumo, Fitranto</au><au>Sebayang, Abdi Hanra</au><au>Husin, Hazlina</au><au>Silitonga, Arridina Susan</au><au>Mahlia, Teuku Meurah Indra</au><au>Rahman, S. M. Ashrafur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology</atitle><jtitle>Processes</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>10</issue><spage>715</spage><pages>715-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using the response surface methodology (RSM) model. This model provided the factor variables of bioethanol concentration (vol %), stearic acid (g), and bioethanol (mL) with a minus result error. The highest calorific value was obtained with 7 g stearic acid and 5 mL bioethanol (43.17 MJ/kg). Burning time was tested to observe the quality of the solid bioethanol. The highest calorific value resulted in the longest burning time. The solid bioethanol has a potential as solid fuel due to the significantly higher calorific value compared to the liquid bioethanol.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr7100715</doi><orcidid>https://orcid.org/0000-0002-7773-1819</orcidid><orcidid>https://orcid.org/0000-0002-6731-4800</orcidid><orcidid>https://orcid.org/0000-0002-0065-8203</orcidid><orcidid>https://orcid.org/0000-0002-6264-1132</orcidid><orcidid>https://orcid.org/0000-0002-6985-929X</orcidid><orcidid>https://orcid.org/0000-0002-0810-7625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2019, Vol.7 (10), p.715
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2550243420
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Alternative energy sources
Alternative fuels
Biodiesel fuels
Biofuels
Biomass
Burning
Burning time
Calorific value
Carbon
Cellulose
Climate change
Distillation
Emissions
Energy storage
Ethanol
Fermentation
Fossil fuels
Greenhouse gases
Hydrolysis
Lignin
Lignocellulose
Optimization
Palm oil
Raw materials
Renewable resources
Response surface methodology
Solid fuels
Solvents
Stearic acid
Sugar
Vegetable oils
title Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20Process%20and%20Optimization%20of%20Solid%20Bioethanol%20from%20Empty%20Fruit%20Bunches%20of%20Palm%20Oil%20Using%20Response%20Surface%20Methodology&rft.jtitle=Processes&rft.au=Nurfahmi&rft.date=2019&rft.volume=7&rft.issue=10&rft.spage=715&rft.pages=715-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr7100715&rft_dat=%3Cproquest_cross%3E2550243420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550243420&rft_id=info:pmid/&rfr_iscdi=true