Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation

The separation of aqueous acetonitrile solution by pressure swing distillation (PSD) was simulated and optimized through Aspen Plus software. The distillation sequence of the low pressure column (LPC) and high pressure column (HPC) was determined with a phase diagram. The pressures of the two column...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2019-07, Vol.7 (7), p.409
Hauptverfasser: Li, Jing, Wang, Keliang, Lian, Minglei, Li, Zhi, Du, Tingzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 409
container_title Processes
container_volume 7
creator Li, Jing
Wang, Keliang
Lian, Minglei
Li, Zhi
Du, Tingzhao
description The separation of aqueous acetonitrile solution by pressure swing distillation (PSD) was simulated and optimized through Aspen Plus software. The distillation sequence of the low pressure column (LPC) and high pressure column (HPC) was determined with a phase diagram. The pressures of the two columns were set to 1 and 4 atm, respectively. Total annual cost (TAC) was considered as the objective function, and design variables, such as the tray number, the reflux ratio, and the feeding position, were optimized. The optimum process parameters were obtained. For the reduction of energy consumption, the PSD with full-heat integration was designed. The TAC of this method is lower by 32.39% of that of the PSD without heat integration. Therefore, it is more economical to separate acetonitrile and water mixture by PSD with full-heat integration, which provides technical support for the separation design of such azeotropes.
doi_str_mv 10.3390/pr7070409
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550227839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550227839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-46898fffbe066a97c620203532c26d76b9c5b18f32476b7775232be50deea55c3</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouKx78BsEPHmoppMmaY7L-hcWXFg9lzZNNEu3qUmK7Lc3Wlmcy8w8frwZHkKXObmhVJLbwQsiSEHkCZoBgMikyMXpv_kcLULYkVQypyXjM9RuvFM6BLy1-7Gro3U9dgbHD423eqj9UVl-jtqNAS-Vjq630dsuIa4bf4HmgDc-2Yw-iV-2f8d3NkTbTY4X6MzUXdCLvz5Hbw_3r6unbP3y-LxarjMFEmJW8FKWxphGE85rKRQHAoQyCgp4K3gjFWvy0lAo0iKEYECh0Yy0WteMKTpHV5Pv4F16N8Rq50bfp5MVMEZSCiWVibqeKOVdCF6bavB2X_tDlZPqJ8fqmCP9BmkIZZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550227839</pqid></control><display><type>article</type><title>Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Jing ; Wang, Keliang ; Lian, Minglei ; Li, Zhi ; Du, Tingzhao</creator><creatorcontrib>Li, Jing ; Wang, Keliang ; Lian, Minglei ; Li, Zhi ; Du, Tingzhao</creatorcontrib><description>The separation of aqueous acetonitrile solution by pressure swing distillation (PSD) was simulated and optimized through Aspen Plus software. The distillation sequence of the low pressure column (LPC) and high pressure column (HPC) was determined with a phase diagram. The pressures of the two columns were set to 1 and 4 atm, respectively. Total annual cost (TAC) was considered as the objective function, and design variables, such as the tray number, the reflux ratio, and the feeding position, were optimized. The optimum process parameters were obtained. For the reduction of energy consumption, the PSD with full-heat integration was designed. The TAC of this method is lower by 32.39% of that of the PSD without heat integration. Therefore, it is more economical to separate acetonitrile and water mixture by PSD with full-heat integration, which provides technical support for the separation design of such azeotropes.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr7070409</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acetonitrile ; Azeotropes ; Distillation ; Energy consumption ; Heat ; Heat transfer ; Industrial design ; Integration ; Low pressure ; Optimization ; Payback periods ; Phase diagrams ; Pressure ; Process parameters ; Separation ; Simulation ; Software ; Technical services ; Variables</subject><ispartof>Processes, 2019-07, Vol.7 (7), p.409</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-46898fffbe066a97c620203532c26d76b9c5b18f32476b7775232be50deea55c3</citedby><cites>FETCH-LOGICAL-c292t-46898fffbe066a97c620203532c26d76b9c5b18f32476b7775232be50deea55c3</cites><orcidid>0000-0002-7862-0539 ; 0000-0003-4238-8544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Keliang</creatorcontrib><creatorcontrib>Lian, Minglei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Du, Tingzhao</creatorcontrib><title>Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation</title><title>Processes</title><description>The separation of aqueous acetonitrile solution by pressure swing distillation (PSD) was simulated and optimized through Aspen Plus software. The distillation sequence of the low pressure column (LPC) and high pressure column (HPC) was determined with a phase diagram. The pressures of the two columns were set to 1 and 4 atm, respectively. Total annual cost (TAC) was considered as the objective function, and design variables, such as the tray number, the reflux ratio, and the feeding position, were optimized. The optimum process parameters were obtained. For the reduction of energy consumption, the PSD with full-heat integration was designed. The TAC of this method is lower by 32.39% of that of the PSD without heat integration. Therefore, it is more economical to separate acetonitrile and water mixture by PSD with full-heat integration, which provides technical support for the separation design of such azeotropes.</description><subject>Acetonitrile</subject><subject>Azeotropes</subject><subject>Distillation</subject><subject>Energy consumption</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Industrial design</subject><subject>Integration</subject><subject>Low pressure</subject><subject>Optimization</subject><subject>Payback periods</subject><subject>Phase diagrams</subject><subject>Pressure</subject><subject>Process parameters</subject><subject>Separation</subject><subject>Simulation</subject><subject>Software</subject><subject>Technical services</subject><subject>Variables</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE9LxDAQxYMouKx78BsEPHmoppMmaY7L-hcWXFg9lzZNNEu3qUmK7Lc3Wlmcy8w8frwZHkKXObmhVJLbwQsiSEHkCZoBgMikyMXpv_kcLULYkVQypyXjM9RuvFM6BLy1-7Gro3U9dgbHD423eqj9UVl-jtqNAS-Vjq630dsuIa4bf4HmgDc-2Yw-iV-2f8d3NkTbTY4X6MzUXdCLvz5Hbw_3r6unbP3y-LxarjMFEmJW8FKWxphGE85rKRQHAoQyCgp4K3gjFWvy0lAo0iKEYECh0Yy0WteMKTpHV5Pv4F16N8Rq50bfp5MVMEZSCiWVibqeKOVdCF6bavB2X_tDlZPqJ8fqmCP9BmkIZZI</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Li, Jing</creator><creator>Wang, Keliang</creator><creator>Lian, Minglei</creator><creator>Li, Zhi</creator><creator>Du, Tingzhao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7862-0539</orcidid><orcidid>https://orcid.org/0000-0003-4238-8544</orcidid></search><sort><creationdate>20190701</creationdate><title>Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation</title><author>Li, Jing ; Wang, Keliang ; Lian, Minglei ; Li, Zhi ; Du, Tingzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-46898fffbe066a97c620203532c26d76b9c5b18f32476b7775232be50deea55c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetonitrile</topic><topic>Azeotropes</topic><topic>Distillation</topic><topic>Energy consumption</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Industrial design</topic><topic>Integration</topic><topic>Low pressure</topic><topic>Optimization</topic><topic>Payback periods</topic><topic>Phase diagrams</topic><topic>Pressure</topic><topic>Process parameters</topic><topic>Separation</topic><topic>Simulation</topic><topic>Software</topic><topic>Technical services</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wang, Keliang</creatorcontrib><creatorcontrib>Lian, Minglei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Du, Tingzhao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Wang, Keliang</au><au>Lian, Minglei</au><au>Li, Zhi</au><au>Du, Tingzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation</atitle><jtitle>Processes</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>7</volume><issue>7</issue><spage>409</spage><pages>409-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The separation of aqueous acetonitrile solution by pressure swing distillation (PSD) was simulated and optimized through Aspen Plus software. The distillation sequence of the low pressure column (LPC) and high pressure column (HPC) was determined with a phase diagram. The pressures of the two columns were set to 1 and 4 atm, respectively. Total annual cost (TAC) was considered as the objective function, and design variables, such as the tray number, the reflux ratio, and the feeding position, were optimized. The optimum process parameters were obtained. For the reduction of energy consumption, the PSD with full-heat integration was designed. The TAC of this method is lower by 32.39% of that of the PSD without heat integration. Therefore, it is more economical to separate acetonitrile and water mixture by PSD with full-heat integration, which provides technical support for the separation design of such azeotropes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr7070409</doi><orcidid>https://orcid.org/0000-0002-7862-0539</orcidid><orcidid>https://orcid.org/0000-0003-4238-8544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2019-07, Vol.7 (7), p.409
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2550227839
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Acetonitrile
Azeotropes
Distillation
Energy consumption
Heat
Heat transfer
Industrial design
Integration
Low pressure
Optimization
Payback periods
Phase diagrams
Pressure
Process parameters
Separation
Simulation
Software
Technical services
Variables
title Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Simulation%20of%20the%20Separation%20of%20Aqueous%20Acetonitrile%20Solution%20by%20Pressure%20Swing%20Distillation&rft.jtitle=Processes&rft.au=Li,%20Jing&rft.date=2019-07-01&rft.volume=7&rft.issue=7&rft.spage=409&rft.pages=409-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr7070409&rft_dat=%3Cproquest_cross%3E2550227839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550227839&rft_id=info:pmid/&rfr_iscdi=true