Edge‐colored complete graphs without properly colored even cycles: A full characterization
The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored C 4....
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2021-09, Vol.98 (1), p.110-124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 1 |
container_start_page | 110 |
container_title | Journal of graph theory |
container_volume | 98 |
creator | Li, Ruonan Broersma, Hajo Yokota, Maho Yoshimoto, Kiyoshi |
description | The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored
C
4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored
C
4 or
C
6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for
k
≥
3, we define four classes of
k‐edge‐colored complete graphs without properly colored even cycles and prove that any
k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes. |
doi_str_mv | 10.1002/jgt.22684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550212328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550212328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtLbjuDFbVZUCqsRSNiTLcS5tKrcOdkIVJh6BZ-RJCARGppNOv_vQH6FLSkaUEDberusRYyLlR2hAiZxEhNL0GA1ILHgkCeOn6CyELenaCUkH6Hmer-Hz_cM46zzk2LhdZaEGvPa62gR8KOuNa2pceVeBty3-g_AKe2xaYyHc4CkuGmux2WivTQ2-fNN16fbn6KTQNsDFbx2ip9v5anYXLR8X97PpMjJxzHgkEjqZgCGGZgljcaIJUCES0EbIjPNMgk5lLg3TmZQ5pXnGRcZTIyVLBaUsHqKrfm_35UsDoVZb1_h9d1KxJCGsIyzt1HWvjHcheChU5cud9q2iRH2Hp7rw1E94nR339lBaaP-H6mGx6ie-APrLcfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550212328</pqid></control><display><type>article</type><title>Edge‐colored complete graphs without properly colored even cycles: A full characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Ruonan ; Broersma, Hajo ; Yokota, Maho ; Yoshimoto, Kiyoshi</creator><creatorcontrib>Li, Ruonan ; Broersma, Hajo ; Yokota, Maho ; Yoshimoto, Kiyoshi</creatorcontrib><description>The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored
C
4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored
C
4 or
C
6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for
k
≥
3, we define four classes of
k‐edge‐colored complete graphs without properly colored even cycles and prove that any
k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22684</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>complete graph ; edge‐colored graph ; forbidden subgraph ; Graph coloring ; Graphs ; properly colored cycle ; Structural analysis</subject><ispartof>Journal of graph theory, 2021-09, Vol.98 (1), p.110-124</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</citedby><cites>FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</cites><orcidid>0000-0001-5419-1533 ; 0000-0002-4678-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22684$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22684$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Li, Ruonan</creatorcontrib><creatorcontrib>Broersma, Hajo</creatorcontrib><creatorcontrib>Yokota, Maho</creatorcontrib><creatorcontrib>Yoshimoto, Kiyoshi</creatorcontrib><title>Edge‐colored complete graphs without properly colored even cycles: A full characterization</title><title>Journal of graph theory</title><description>The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored
C
4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored
C
4 or
C
6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for
k
≥
3, we define four classes of
k‐edge‐colored complete graphs without properly colored even cycles and prove that any
k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes.</description><subject>complete graph</subject><subject>edge‐colored graph</subject><subject>forbidden subgraph</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>properly colored cycle</subject><subject>Structural analysis</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtLbjuDFbVZUCqsRSNiTLcS5tKrcOdkIVJh6BZ-RJCARGppNOv_vQH6FLSkaUEDberusRYyLlR2hAiZxEhNL0GA1ILHgkCeOn6CyELenaCUkH6Hmer-Hz_cM46zzk2LhdZaEGvPa62gR8KOuNa2pceVeBty3-g_AKe2xaYyHc4CkuGmux2WivTQ2-fNN16fbn6KTQNsDFbx2ip9v5anYXLR8X97PpMjJxzHgkEjqZgCGGZgljcaIJUCES0EbIjPNMgk5lLg3TmZQ5pXnGRcZTIyVLBaUsHqKrfm_35UsDoVZb1_h9d1KxJCGsIyzt1HWvjHcheChU5cud9q2iRH2Hp7rw1E94nR339lBaaP-H6mGx6ie-APrLcfk</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Li, Ruonan</creator><creator>Broersma, Hajo</creator><creator>Yokota, Maho</creator><creator>Yoshimoto, Kiyoshi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5419-1533</orcidid><orcidid>https://orcid.org/0000-0002-4678-3210</orcidid></search><sort><creationdate>202109</creationdate><title>Edge‐colored complete graphs without properly colored even cycles: A full characterization</title><author>Li, Ruonan ; Broersma, Hajo ; Yokota, Maho ; Yoshimoto, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>complete graph</topic><topic>edge‐colored graph</topic><topic>forbidden subgraph</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>properly colored cycle</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruonan</creatorcontrib><creatorcontrib>Broersma, Hajo</creatorcontrib><creatorcontrib>Yokota, Maho</creatorcontrib><creatorcontrib>Yoshimoto, Kiyoshi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruonan</au><au>Broersma, Hajo</au><au>Yokota, Maho</au><au>Yoshimoto, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge‐colored complete graphs without properly colored even cycles: A full characterization</atitle><jtitle>Journal of graph theory</jtitle><date>2021-09</date><risdate>2021</risdate><volume>98</volume><issue>1</issue><spage>110</spage><epage>124</epage><pages>110-124</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored
C
4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored
C
4 or
C
6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for
k
≥
3, we define four classes of
k‐edge‐colored complete graphs without properly colored even cycles and prove that any
k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22684</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5419-1533</orcidid><orcidid>https://orcid.org/0000-0002-4678-3210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2021-09, Vol.98 (1), p.110-124 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_2550212328 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | complete graph edge‐colored graph forbidden subgraph Graph coloring Graphs properly colored cycle Structural analysis |
title | Edge‐colored complete graphs without properly colored even cycles: A full characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%E2%80%90colored%20complete%20graphs%20without%20properly%20colored%20even%20cycles:%20A%20full%20characterization&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Li,%20Ruonan&rft.date=2021-09&rft.volume=98&rft.issue=1&rft.spage=110&rft.epage=124&rft.pages=110-124&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22684&rft_dat=%3Cproquest_cross%3E2550212328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550212328&rft_id=info:pmid/&rfr_iscdi=true |