Edge‐colored complete graphs without properly colored even cycles: A full characterization

The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored C 4....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2021-09, Vol.98 (1), p.110-124
Hauptverfasser: Li, Ruonan, Broersma, Hajo, Yokota, Maho, Yoshimoto, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1
container_start_page 110
container_title Journal of graph theory
container_volume 98
creator Li, Ruonan
Broersma, Hajo
Yokota, Maho
Yoshimoto, Kiyoshi
description The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored C 4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored C 4 or C 6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for k ≥ 3, we define four classes of k‐edge‐colored complete graphs without properly colored even cycles and prove that any k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes.
doi_str_mv 10.1002/jgt.22684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550212328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550212328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtLbjuDFbVZUCqsRSNiTLcS5tKrcOdkIVJh6BZ-RJCARGppNOv_vQH6FLSkaUEDberusRYyLlR2hAiZxEhNL0GA1ILHgkCeOn6CyELenaCUkH6Hmer-Hz_cM46zzk2LhdZaEGvPa62gR8KOuNa2pceVeBty3-g_AKe2xaYyHc4CkuGmux2WivTQ2-fNN16fbn6KTQNsDFbx2ip9v5anYXLR8X97PpMjJxzHgkEjqZgCGGZgljcaIJUCES0EbIjPNMgk5lLg3TmZQ5pXnGRcZTIyVLBaUsHqKrfm_35UsDoVZb1_h9d1KxJCGsIyzt1HWvjHcheChU5cud9q2iRH2Hp7rw1E94nR339lBaaP-H6mGx6ie-APrLcfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550212328</pqid></control><display><type>article</type><title>Edge‐colored complete graphs without properly colored even cycles: A full characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Ruonan ; Broersma, Hajo ; Yokota, Maho ; Yoshimoto, Kiyoshi</creator><creatorcontrib>Li, Ruonan ; Broersma, Hajo ; Yokota, Maho ; Yoshimoto, Kiyoshi</creatorcontrib><description>The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored C 4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored C 4 or C 6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for k ≥ 3, we define four classes of k‐edge‐colored complete graphs without properly colored even cycles and prove that any k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22684</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>complete graph ; edge‐colored graph ; forbidden subgraph ; Graph coloring ; Graphs ; properly colored cycle ; Structural analysis</subject><ispartof>Journal of graph theory, 2021-09, Vol.98 (1), p.110-124</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</citedby><cites>FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</cites><orcidid>0000-0001-5419-1533 ; 0000-0002-4678-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22684$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22684$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Li, Ruonan</creatorcontrib><creatorcontrib>Broersma, Hajo</creatorcontrib><creatorcontrib>Yokota, Maho</creatorcontrib><creatorcontrib>Yoshimoto, Kiyoshi</creatorcontrib><title>Edge‐colored complete graphs without properly colored even cycles: A full characterization</title><title>Journal of graph theory</title><description>The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored C 4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored C 4 or C 6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for k ≥ 3, we define four classes of k‐edge‐colored complete graphs without properly colored even cycles and prove that any k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes.</description><subject>complete graph</subject><subject>edge‐colored graph</subject><subject>forbidden subgraph</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>properly colored cycle</subject><subject>Structural analysis</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtLbjuDFbVZUCqsRSNiTLcS5tKrcOdkIVJh6BZ-RJCARGppNOv_vQH6FLSkaUEDberusRYyLlR2hAiZxEhNL0GA1ILHgkCeOn6CyELenaCUkH6Hmer-Hz_cM46zzk2LhdZaEGvPa62gR8KOuNa2pceVeBty3-g_AKe2xaYyHc4CkuGmux2WivTQ2-fNN16fbn6KTQNsDFbx2ip9v5anYXLR8X97PpMjJxzHgkEjqZgCGGZgljcaIJUCES0EbIjPNMgk5lLg3TmZQ5pXnGRcZTIyVLBaUsHqKrfm_35UsDoVZb1_h9d1KxJCGsIyzt1HWvjHcheChU5cud9q2iRH2Hp7rw1E94nR339lBaaP-H6mGx6ie-APrLcfk</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Li, Ruonan</creator><creator>Broersma, Hajo</creator><creator>Yokota, Maho</creator><creator>Yoshimoto, Kiyoshi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5419-1533</orcidid><orcidid>https://orcid.org/0000-0002-4678-3210</orcidid></search><sort><creationdate>202109</creationdate><title>Edge‐colored complete graphs without properly colored even cycles: A full characterization</title><author>Li, Ruonan ; Broersma, Hajo ; Yokota, Maho ; Yoshimoto, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3324-65177ec0c1b52235a0e1665eac69b44b9ea89d9c2ab99d11db46b48c992861123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>complete graph</topic><topic>edge‐colored graph</topic><topic>forbidden subgraph</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>properly colored cycle</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruonan</creatorcontrib><creatorcontrib>Broersma, Hajo</creatorcontrib><creatorcontrib>Yokota, Maho</creatorcontrib><creatorcontrib>Yoshimoto, Kiyoshi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruonan</au><au>Broersma, Hajo</au><au>Yokota, Maho</au><au>Yoshimoto, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge‐colored complete graphs without properly colored even cycles: A full characterization</atitle><jtitle>Journal of graph theory</jtitle><date>2021-09</date><risdate>2021</risdate><volume>98</volume><issue>1</issue><spage>110</spage><epage>124</epage><pages>110-124</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>The structure of edge‐colored complete graphs containing no properly colored triangles has been characterized by Gallai back in the 1960s. More recently, Cǎda et al. and Fujita et al. independently determined the structure of edge‐colored complete bipartite graphs containing no properly colored C 4. We characterize the structure of edge‐colored complete graphs containing no properly colored even cycles, or equivalently, without a properly colored C 4 or C 6. In particular, we first deal with the simple case of 2‐edge‐colored complete graphs, using a result of Yeo. Next, for k ≥ 3, we define four classes of k‐edge‐colored complete graphs without properly colored even cycles and prove that any k‐edge‐colored complete graph without a properly colored even cycle belongs to one of these four classes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22684</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5419-1533</orcidid><orcidid>https://orcid.org/0000-0002-4678-3210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2021-09, Vol.98 (1), p.110-124
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2550212328
source Wiley Online Library Journals Frontfile Complete
subjects complete graph
edge‐colored graph
forbidden subgraph
Graph coloring
Graphs
properly colored cycle
Structural analysis
title Edge‐colored complete graphs without properly colored even cycles: A full characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%E2%80%90colored%20complete%20graphs%20without%20properly%20colored%20even%20cycles:%20A%20full%20characterization&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Li,%20Ruonan&rft.date=2021-09&rft.volume=98&rft.issue=1&rft.spage=110&rft.epage=124&rft.pages=110-124&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22684&rft_dat=%3Cproquest_cross%3E2550212328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550212328&rft_id=info:pmid/&rfr_iscdi=true