Uncertainty principles for the quadratic‐phase Fourier transforms

The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-09, Vol.44 (13), p.10416-10431
Hauptverfasser: Shah, Firdous A., Nisar, Kottakkaran S., Lone, Waseem Z., Tantary, Azhar Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10431
container_issue 13
container_start_page 10416
container_title Mathematical methods in the applied sciences
container_volume 44
creator Shah, Firdous A.
Nisar, Kottakkaran S.
Lone, Waseem Z.
Tantary, Azhar Y.
description The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT.
doi_str_mv 10.1002/mma.7417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550182210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550182210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</originalsourceid><addsrcrecordid>eNp10M1OAjEQB_DGaCKiiY-wiRcvizNtodsjIYImEC9yboZuNyxhP2iXmL35CD6jT2IRr57mML_Mx5-xe4QRAvCnqqKRkqgu2ABB6xSlmlyyAaCCVHKU1-wmhB0AZIh8wGbr2jrfUVl3fdL6srZlu3chKRqfdFuXHI6Ue-pK-_351W4puGTeHH3pYtdTHSKrwi27Kmgf3N1fHbL1_Pl99pIu3xavs-kytVwLleZFlmslgYpso0mBQmmFligKtHyjpdUiF46Tls5NJOJEEM8EORJjTai0GLKH89zWN4ejC53ZxVvquNLw8Rgw4xwhqsezsr4JwbvCxLcq8r1BMKeITIzInCKKND3Tj3Lv-n-dWa2mv_4H8xBoAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550182210</pqid></control><display><type>article</type><title>Uncertainty principles for the quadratic‐phase Fourier transforms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shah, Firdous A. ; Nisar, Kottakkaran S. ; Lone, Waseem Z. ; Tantary, Azhar Y.</creator><creatorcontrib>Shah, Firdous A. ; Nisar, Kottakkaran S. ; Lone, Waseem Z. ; Tantary, Azhar Y.</creatorcontrib><description>The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7417</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>concentration‐based uncertainty principle ; Fourier transforms ; Hardy's inequality ; Heisenberg's inequality ; Inequalities ; logarithmic and local inequalities ; Principles ; quadratic‐phase Fourier transform ; Signal processing ; uncertainty principle ; Uncertainty principles</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10416-10431</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</citedby><cites>FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</cites><orcidid>0000-0001-8461-869X ; 0000-0002-9826-9475 ; 0000-0001-5769-4320 ; 0000-0002-4197-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shah, Firdous A.</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><creatorcontrib>Lone, Waseem Z.</creatorcontrib><creatorcontrib>Tantary, Azhar Y.</creatorcontrib><title>Uncertainty principles for the quadratic‐phase Fourier transforms</title><title>Mathematical methods in the applied sciences</title><description>The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT.</description><subject>concentration‐based uncertainty principle</subject><subject>Fourier transforms</subject><subject>Hardy's inequality</subject><subject>Heisenberg's inequality</subject><subject>Inequalities</subject><subject>logarithmic and local inequalities</subject><subject>Principles</subject><subject>quadratic‐phase Fourier transform</subject><subject>Signal processing</subject><subject>uncertainty principle</subject><subject>Uncertainty principles</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M1OAjEQB_DGaCKiiY-wiRcvizNtodsjIYImEC9yboZuNyxhP2iXmL35CD6jT2IRr57mML_Mx5-xe4QRAvCnqqKRkqgu2ABB6xSlmlyyAaCCVHKU1-wmhB0AZIh8wGbr2jrfUVl3fdL6srZlu3chKRqfdFuXHI6Ue-pK-_351W4puGTeHH3pYtdTHSKrwi27Kmgf3N1fHbL1_Pl99pIu3xavs-kytVwLleZFlmslgYpso0mBQmmFligKtHyjpdUiF46Tls5NJOJEEM8EORJjTai0GLKH89zWN4ejC53ZxVvquNLw8Rgw4xwhqsezsr4JwbvCxLcq8r1BMKeITIzInCKKND3Tj3Lv-n-dWa2mv_4H8xBoAQ</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Shah, Firdous A.</creator><creator>Nisar, Kottakkaran S.</creator><creator>Lone, Waseem Z.</creator><creator>Tantary, Azhar Y.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8461-869X</orcidid><orcidid>https://orcid.org/0000-0002-9826-9475</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4197-2813</orcidid></search><sort><creationdate>20210915</creationdate><title>Uncertainty principles for the quadratic‐phase Fourier transforms</title><author>Shah, Firdous A. ; Nisar, Kottakkaran S. ; Lone, Waseem Z. ; Tantary, Azhar Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>concentration‐based uncertainty principle</topic><topic>Fourier transforms</topic><topic>Hardy's inequality</topic><topic>Heisenberg's inequality</topic><topic>Inequalities</topic><topic>logarithmic and local inequalities</topic><topic>Principles</topic><topic>quadratic‐phase Fourier transform</topic><topic>Signal processing</topic><topic>uncertainty principle</topic><topic>Uncertainty principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Firdous A.</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><creatorcontrib>Lone, Waseem Z.</creatorcontrib><creatorcontrib>Tantary, Azhar Y.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Firdous A.</au><au>Nisar, Kottakkaran S.</au><au>Lone, Waseem Z.</au><au>Tantary, Azhar Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty principles for the quadratic‐phase Fourier transforms</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>44</volume><issue>13</issue><spage>10416</spage><epage>10431</epage><pages>10416-10431</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7417</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8461-869X</orcidid><orcidid>https://orcid.org/0000-0002-9826-9475</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4197-2813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10416-10431
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2550182210
source Wiley Online Library Journals Frontfile Complete
subjects concentration‐based uncertainty principle
Fourier transforms
Hardy's inequality
Heisenberg's inequality
Inequalities
logarithmic and local inequalities
Principles
quadratic‐phase Fourier transform
Signal processing
uncertainty principle
Uncertainty principles
title Uncertainty principles for the quadratic‐phase Fourier transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20principles%20for%20the%20quadratic%E2%80%90phase%20Fourier%20transforms&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shah,%20Firdous%20A.&rft.date=2021-09-15&rft.volume=44&rft.issue=13&rft.spage=10416&rft.epage=10431&rft.pages=10416-10431&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7417&rft_dat=%3Cproquest_cross%3E2550182210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550182210&rft_id=info:pmid/&rfr_iscdi=true