Uncertainty principles for the quadratic‐phase Fourier transforms
The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of u...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-09, Vol.44 (13), p.10416-10431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10431 |
---|---|
container_issue | 13 |
container_start_page | 10416 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Shah, Firdous A. Nisar, Kottakkaran S. Lone, Waseem Z. Tantary, Azhar Y. |
description | The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT. |
doi_str_mv | 10.1002/mma.7417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550182210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550182210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</originalsourceid><addsrcrecordid>eNp10M1OAjEQB_DGaCKiiY-wiRcvizNtodsjIYImEC9yboZuNyxhP2iXmL35CD6jT2IRr57mML_Mx5-xe4QRAvCnqqKRkqgu2ABB6xSlmlyyAaCCVHKU1-wmhB0AZIh8wGbr2jrfUVl3fdL6srZlu3chKRqfdFuXHI6Ue-pK-_351W4puGTeHH3pYtdTHSKrwi27Kmgf3N1fHbL1_Pl99pIu3xavs-kytVwLleZFlmslgYpso0mBQmmFligKtHyjpdUiF46Tls5NJOJEEM8EORJjTai0GLKH89zWN4ejC53ZxVvquNLw8Rgw4xwhqsezsr4JwbvCxLcq8r1BMKeITIzInCKKND3Tj3Lv-n-dWa2mv_4H8xBoAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550182210</pqid></control><display><type>article</type><title>Uncertainty principles for the quadratic‐phase Fourier transforms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shah, Firdous A. ; Nisar, Kottakkaran S. ; Lone, Waseem Z. ; Tantary, Azhar Y.</creator><creatorcontrib>Shah, Firdous A. ; Nisar, Kottakkaran S. ; Lone, Waseem Z. ; Tantary, Azhar Y.</creatorcontrib><description>The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7417</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>concentration‐based uncertainty principle ; Fourier transforms ; Hardy's inequality ; Heisenberg's inequality ; Inequalities ; logarithmic and local inequalities ; Principles ; quadratic‐phase Fourier transform ; Signal processing ; uncertainty principle ; Uncertainty principles</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10416-10431</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</citedby><cites>FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</cites><orcidid>0000-0001-8461-869X ; 0000-0002-9826-9475 ; 0000-0001-5769-4320 ; 0000-0002-4197-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shah, Firdous A.</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><creatorcontrib>Lone, Waseem Z.</creatorcontrib><creatorcontrib>Tantary, Azhar Y.</creatorcontrib><title>Uncertainty principles for the quadratic‐phase Fourier transforms</title><title>Mathematical methods in the applied sciences</title><description>The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT.</description><subject>concentration‐based uncertainty principle</subject><subject>Fourier transforms</subject><subject>Hardy's inequality</subject><subject>Heisenberg's inequality</subject><subject>Inequalities</subject><subject>logarithmic and local inequalities</subject><subject>Principles</subject><subject>quadratic‐phase Fourier transform</subject><subject>Signal processing</subject><subject>uncertainty principle</subject><subject>Uncertainty principles</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M1OAjEQB_DGaCKiiY-wiRcvizNtodsjIYImEC9yboZuNyxhP2iXmL35CD6jT2IRr57mML_Mx5-xe4QRAvCnqqKRkqgu2ABB6xSlmlyyAaCCVHKU1-wmhB0AZIh8wGbr2jrfUVl3fdL6srZlu3chKRqfdFuXHI6Ue-pK-_351W4puGTeHH3pYtdTHSKrwi27Kmgf3N1fHbL1_Pl99pIu3xavs-kytVwLleZFlmslgYpso0mBQmmFligKtHyjpdUiF46Tls5NJOJEEM8EORJjTai0GLKH89zWN4ejC53ZxVvquNLw8Rgw4xwhqsezsr4JwbvCxLcq8r1BMKeITIzInCKKND3Tj3Lv-n-dWa2mv_4H8xBoAQ</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Shah, Firdous A.</creator><creator>Nisar, Kottakkaran S.</creator><creator>Lone, Waseem Z.</creator><creator>Tantary, Azhar Y.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8461-869X</orcidid><orcidid>https://orcid.org/0000-0002-9826-9475</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4197-2813</orcidid></search><sort><creationdate>20210915</creationdate><title>Uncertainty principles for the quadratic‐phase Fourier transforms</title><author>Shah, Firdous A. ; Nisar, Kottakkaran S. ; Lone, Waseem Z. ; Tantary, Azhar Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-df8d9740af8b9a70714c39413f1c2b94c93d3e2a94ee641163a283aea359a1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>concentration‐based uncertainty principle</topic><topic>Fourier transforms</topic><topic>Hardy's inequality</topic><topic>Heisenberg's inequality</topic><topic>Inequalities</topic><topic>logarithmic and local inequalities</topic><topic>Principles</topic><topic>quadratic‐phase Fourier transform</topic><topic>Signal processing</topic><topic>uncertainty principle</topic><topic>Uncertainty principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Firdous A.</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><creatorcontrib>Lone, Waseem Z.</creatorcontrib><creatorcontrib>Tantary, Azhar Y.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Firdous A.</au><au>Nisar, Kottakkaran S.</au><au>Lone, Waseem Z.</au><au>Tantary, Azhar Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty principles for the quadratic‐phase Fourier transforms</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>44</volume><issue>13</issue><spage>10416</spage><epage>10431</epage><pages>10416-10431</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The quadratic‐phase Fourier transform (QPFT) is a recent addition to the class of Fourier transforms and embodies a variety of signal processing tools including the Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this article, we formulate several classes of uncertainty principles for the QPFT. Firstly, we formulate the Heisenberg's uncertainty principle governing the simultaneous localization of a signal and the corresponding QPFT. Secondly, we obtain some logarithmic and local uncertainty inequalities such as Beckner and Sobolev inequalities for the QPFT. Thirdly, we study several concentration‐based uncertainty principles, including Nazarov's, Amrein–Berthier–Benedicks's, and Donoho–Stark's uncertainty principles. Finally, we conclude the study with the formulation of Hardy's and Beurling's uncertainty principles for the QPFT.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7417</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8461-869X</orcidid><orcidid>https://orcid.org/0000-0002-9826-9475</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-4197-2813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10416-10431 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2550182210 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | concentration‐based uncertainty principle Fourier transforms Hardy's inequality Heisenberg's inequality Inequalities logarithmic and local inequalities Principles quadratic‐phase Fourier transform Signal processing uncertainty principle Uncertainty principles |
title | Uncertainty principles for the quadratic‐phase Fourier transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20principles%20for%20the%20quadratic%E2%80%90phase%20Fourier%20transforms&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shah,%20Firdous%20A.&rft.date=2021-09-15&rft.volume=44&rft.issue=13&rft.spage=10416&rft.epage=10431&rft.pages=10416-10431&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7417&rft_dat=%3Cproquest_cross%3E2550182210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550182210&rft_id=info:pmid/&rfr_iscdi=true |