An efficient computational approach for fractional Bratu's equation arising in electrospinning process

This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-09, Vol.44 (13), p.10225-10238
Hauptverfasser: Singh, Harendra, Singh, Amit Kumar, Pandey, Rajesh K., Kumar, Devendra, Singh, Jagdev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10238
container_issue 13
container_start_page 10225
container_title Mathematical methods in the applied sciences
container_volume 44
creator Singh, Harendra
Singh, Amit Kumar
Pandey, Rajesh K.
Kumar, Devendra
Singh, Jagdev
description This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate.
doi_str_mv 10.1002/mma.7401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550182165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550182165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqUg8RMscYBLyq7zcHIsFS-pFRc4W45jg6u8aidC_fc4ba9cdqXZT7OjIeQWYYEA7LFp5IIngGdkhlAUESY8OyczQA5RwjC5JFfebwEgR2QzYpYt1cZYZXU7UNU1_TjIwXatrKnse9dJ9UNN56hxUp30JyeH8d5TvRsPKJXOett-Uxu8aq0G1_netu0kBQelvb8mF0bWXt-c9px8vTx_rt6i9cfr-2q5jhQrYgyz5HmZViF5jCZTOcYYmyKDissy4ZzlEOQ0BxYznZssnCrkpeJFXKRJlcRzcnf0DX93o_aD2HajC6G9YGkKmDPM0kA9HCkVknqnjeidbaTbCwQxtShCi2JqMaDREf21td7_y4nNZnng_wA2L3Nf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550182165</pqid></control><display><type>article</type><title>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Singh, Harendra ; Singh, Amit Kumar ; Pandey, Rajesh K. ; Kumar, Devendra ; Singh, Jagdev</creator><creatorcontrib>Singh, Harendra ; Singh, Amit Kumar ; Pandey, Rajesh K. ; Kumar, Devendra ; Singh, Jagdev</creatorcontrib><description>This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7401</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Chebyshev approximation ; Chebyshev polynomials of third kind ; convergence analysis ; Electrospinning ; Error analysis ; fractional Bratu's equation ; Polynomials ; Vibration analysis</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10225-10238</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</citedby><cites>FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</cites><orcidid>0000-0003-1676-9992 ; 0000-0001-6853-4138 ; 0000-0003-4249-6326 ; 0000-0002-5198-4340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7401$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7401$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Singh, Harendra</creatorcontrib><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Pandey, Rajesh K.</creatorcontrib><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Singh, Jagdev</creatorcontrib><title>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</title><title>Mathematical methods in the applied sciences</title><description>This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate.</description><subject>Approximation</subject><subject>Chebyshev approximation</subject><subject>Chebyshev polynomials of third kind</subject><subject>convergence analysis</subject><subject>Electrospinning</subject><subject>Error analysis</subject><subject>fractional Bratu's equation</subject><subject>Polynomials</subject><subject>Vibration analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqUg8RMscYBLyq7zcHIsFS-pFRc4W45jg6u8aidC_fc4ba9cdqXZT7OjIeQWYYEA7LFp5IIngGdkhlAUESY8OyczQA5RwjC5JFfebwEgR2QzYpYt1cZYZXU7UNU1_TjIwXatrKnse9dJ9UNN56hxUp30JyeH8d5TvRsPKJXOett-Uxu8aq0G1_netu0kBQelvb8mF0bWXt-c9px8vTx_rt6i9cfr-2q5jhQrYgyz5HmZViF5jCZTOcYYmyKDissy4ZzlEOQ0BxYznZssnCrkpeJFXKRJlcRzcnf0DX93o_aD2HajC6G9YGkKmDPM0kA9HCkVknqnjeidbaTbCwQxtShCi2JqMaDREf21td7_y4nNZnng_wA2L3Nf</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Singh, Harendra</creator><creator>Singh, Amit Kumar</creator><creator>Pandey, Rajesh K.</creator><creator>Kumar, Devendra</creator><creator>Singh, Jagdev</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1676-9992</orcidid><orcidid>https://orcid.org/0000-0001-6853-4138</orcidid><orcidid>https://orcid.org/0000-0003-4249-6326</orcidid><orcidid>https://orcid.org/0000-0002-5198-4340</orcidid></search><sort><creationdate>20210915</creationdate><title>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</title><author>Singh, Harendra ; Singh, Amit Kumar ; Pandey, Rajesh K. ; Kumar, Devendra ; Singh, Jagdev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Chebyshev approximation</topic><topic>Chebyshev polynomials of third kind</topic><topic>convergence analysis</topic><topic>Electrospinning</topic><topic>Error analysis</topic><topic>fractional Bratu's equation</topic><topic>Polynomials</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Harendra</creatorcontrib><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Pandey, Rajesh K.</creatorcontrib><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Singh, Jagdev</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Harendra</au><au>Singh, Amit Kumar</au><au>Pandey, Rajesh K.</au><au>Kumar, Devendra</au><au>Singh, Jagdev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>44</volume><issue>13</issue><spage>10225</spage><epage>10238</epage><pages>10225-10238</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7401</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1676-9992</orcidid><orcidid>https://orcid.org/0000-0001-6853-4138</orcidid><orcidid>https://orcid.org/0000-0003-4249-6326</orcidid><orcidid>https://orcid.org/0000-0002-5198-4340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10225-10238
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2550182165
source Wiley Online Library Journals Frontfile Complete
subjects Approximation
Chebyshev approximation
Chebyshev polynomials of third kind
convergence analysis
Electrospinning
Error analysis
fractional Bratu's equation
Polynomials
Vibration analysis
title An efficient computational approach for fractional Bratu's equation arising in electrospinning process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20computational%20approach%20for%20fractional%20Bratu's%20equation%20arising%20in%20electrospinning%20process&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Singh,%20Harendra&rft.date=2021-09-15&rft.volume=44&rft.issue=13&rft.spage=10225&rft.epage=10238&rft.pages=10225-10238&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7401&rft_dat=%3Cproquest_cross%3E2550182165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550182165&rft_id=info:pmid/&rfr_iscdi=true