An efficient computational approach for fractional Bratu's equation arising in electrospinning process
This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discu...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-09, Vol.44 (13), p.10225-10238 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10238 |
---|---|
container_issue | 13 |
container_start_page | 10225 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Singh, Harendra Singh, Amit Kumar Pandey, Rajesh K. Kumar, Devendra Singh, Jagdev |
description | This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate. |
doi_str_mv | 10.1002/mma.7401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550182165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550182165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqUg8RMscYBLyq7zcHIsFS-pFRc4W45jg6u8aidC_fc4ba9cdqXZT7OjIeQWYYEA7LFp5IIngGdkhlAUESY8OyczQA5RwjC5JFfebwEgR2QzYpYt1cZYZXU7UNU1_TjIwXatrKnse9dJ9UNN56hxUp30JyeH8d5TvRsPKJXOett-Uxu8aq0G1_netu0kBQelvb8mF0bWXt-c9px8vTx_rt6i9cfr-2q5jhQrYgyz5HmZViF5jCZTOcYYmyKDissy4ZzlEOQ0BxYznZssnCrkpeJFXKRJlcRzcnf0DX93o_aD2HajC6G9YGkKmDPM0kA9HCkVknqnjeidbaTbCwQxtShCi2JqMaDREf21td7_y4nNZnng_wA2L3Nf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550182165</pqid></control><display><type>article</type><title>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Singh, Harendra ; Singh, Amit Kumar ; Pandey, Rajesh K. ; Kumar, Devendra ; Singh, Jagdev</creator><creatorcontrib>Singh, Harendra ; Singh, Amit Kumar ; Pandey, Rajesh K. ; Kumar, Devendra ; Singh, Jagdev</creatorcontrib><description>This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7401</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Chebyshev approximation ; Chebyshev polynomials of third kind ; convergence analysis ; Electrospinning ; Error analysis ; fractional Bratu's equation ; Polynomials ; Vibration analysis</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10225-10238</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</citedby><cites>FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</cites><orcidid>0000-0003-1676-9992 ; 0000-0001-6853-4138 ; 0000-0003-4249-6326 ; 0000-0002-5198-4340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7401$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7401$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Singh, Harendra</creatorcontrib><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Pandey, Rajesh K.</creatorcontrib><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Singh, Jagdev</creatorcontrib><title>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</title><title>Mathematical methods in the applied sciences</title><description>This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate.</description><subject>Approximation</subject><subject>Chebyshev approximation</subject><subject>Chebyshev polynomials of third kind</subject><subject>convergence analysis</subject><subject>Electrospinning</subject><subject>Error analysis</subject><subject>fractional Bratu's equation</subject><subject>Polynomials</subject><subject>Vibration analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqUg8RMscYBLyq7zcHIsFS-pFRc4W45jg6u8aidC_fc4ba9cdqXZT7OjIeQWYYEA7LFp5IIngGdkhlAUESY8OyczQA5RwjC5JFfebwEgR2QzYpYt1cZYZXU7UNU1_TjIwXatrKnse9dJ9UNN56hxUp30JyeH8d5TvRsPKJXOett-Uxu8aq0G1_netu0kBQelvb8mF0bWXt-c9px8vTx_rt6i9cfr-2q5jhQrYgyz5HmZViF5jCZTOcYYmyKDissy4ZzlEOQ0BxYznZssnCrkpeJFXKRJlcRzcnf0DX93o_aD2HajC6G9YGkKmDPM0kA9HCkVknqnjeidbaTbCwQxtShCi2JqMaDREf21td7_y4nNZnng_wA2L3Nf</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Singh, Harendra</creator><creator>Singh, Amit Kumar</creator><creator>Pandey, Rajesh K.</creator><creator>Kumar, Devendra</creator><creator>Singh, Jagdev</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1676-9992</orcidid><orcidid>https://orcid.org/0000-0001-6853-4138</orcidid><orcidid>https://orcid.org/0000-0003-4249-6326</orcidid><orcidid>https://orcid.org/0000-0002-5198-4340</orcidid></search><sort><creationdate>20210915</creationdate><title>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</title><author>Singh, Harendra ; Singh, Amit Kumar ; Pandey, Rajesh K. ; Kumar, Devendra ; Singh, Jagdev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-c2b78b5d10931f6c81313f960d7ab4772801f6580232e8f6f96d17bc793954d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Chebyshev approximation</topic><topic>Chebyshev polynomials of third kind</topic><topic>convergence analysis</topic><topic>Electrospinning</topic><topic>Error analysis</topic><topic>fractional Bratu's equation</topic><topic>Polynomials</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Harendra</creatorcontrib><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Pandey, Rajesh K.</creatorcontrib><creatorcontrib>Kumar, Devendra</creatorcontrib><creatorcontrib>Singh, Jagdev</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Harendra</au><au>Singh, Amit Kumar</au><au>Pandey, Rajesh K.</au><au>Kumar, Devendra</au><au>Singh, Jagdev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient computational approach for fractional Bratu's equation arising in electrospinning process</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>44</volume><issue>13</issue><spage>10225</spage><epage>10238</epage><pages>10225-10238</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This article deals with fractional model of Bratu's equation. We have solved fractional model of Bratu's equation using Chebyshev polynomials (CPs). The fractional model of Bratu's equation plays an important role in electrospinning and vibration‐electrospinning process. We have discussed the error analysis of proposed scheme. We have also provided the convergence of suggested approximate method. Numerical results are demonstrated for various order of fractional derivative. Error tables reveal the accuracy of the suggested scheme. The outcomes of the present investigation are compared with some known studied and detected that our approach is more efficient and accurate.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7401</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1676-9992</orcidid><orcidid>https://orcid.org/0000-0001-6853-4138</orcidid><orcidid>https://orcid.org/0000-0003-4249-6326</orcidid><orcidid>https://orcid.org/0000-0002-5198-4340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10225-10238 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2550182165 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Approximation Chebyshev approximation Chebyshev polynomials of third kind convergence analysis Electrospinning Error analysis fractional Bratu's equation Polynomials Vibration analysis |
title | An efficient computational approach for fractional Bratu's equation arising in electrospinning process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20computational%20approach%20for%20fractional%20Bratu's%20equation%20arising%20in%20electrospinning%20process&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Singh,%20Harendra&rft.date=2021-09-15&rft.volume=44&rft.issue=13&rft.spage=10225&rft.epage=10238&rft.pages=10225-10238&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7401&rft_dat=%3Cproquest_cross%3E2550182165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550182165&rft_id=info:pmid/&rfr_iscdi=true |