Ulam‐Hyers‐Rassias stability for generalized fractional differential equations

In this paper, we present a generalized Gronwall inequality with singularity. Using this inequality, we investigate the existence, uniqueness, and Ulam‐Hyers‐Rassias stability for solutions of a class of generalized nonlinear fractional differential equations of order α (1 

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-09, Vol.44 (13), p.10267-10280
Hauptverfasser: Boucenna, Djalal, Ben Makhlouf, Abdellatif, El‐hady, El‐sayed, Hammami, Mohamed Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10280
container_issue 13
container_start_page 10267
container_title Mathematical methods in the applied sciences
container_volume 44
creator Boucenna, Djalal
Ben Makhlouf, Abdellatif
El‐hady, El‐sayed
Hammami, Mohamed Ali
description In this paper, we present a generalized Gronwall inequality with singularity. Using this inequality, we investigate the existence, uniqueness, and Ulam‐Hyers‐Rassias stability for solutions of a class of generalized nonlinear fractional differential equations of order α (1 
doi_str_mv 10.1002/mma.7406
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2550182116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550182116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-a8f23a7396db8742cded1b08ac9ce6dbd84191e7eec5ff9b3d0ce2beb26ac3803</originalsourceid><addsrcrecordid>eNqNkM9Kw0AQxhdRsFbBRwh4ESR1Z5NukmMJaoUWodhz2GxmZUv-tLsJEk8-gs_ok7hpizfBuXzM8Jvhm4-Qa6AToJTdV5WYRCHlJ2QENEl8CCN-SkYUIuqHDMJzcmHthlIaA7ARWa1LUX1_fs17NNbpSlirhfVsK3Jd6rb3VGO8N6zRiFJ_YOEpI2Srm1qUXqGVQoN1q12Du04Mc3tJzpQoLV4ddUzWjw-v6dxfvDw9p7OFL1kScF_EigUiChJe5HEUMllgATmNhUwkulkRh5AARohyqlSSBwWVyHLMGRcyiGkwJjeHu1vT7Dq0bbZpOuN82YxNpxRiBsAddXugpGmsNaiyrdGVMH0GNBsSy1xi2ZCYQ-MD-o55o6zUWEv8xV1kPEgg4HQoSHW7fzdturp1q3f_X3W0f6R1if2fhrLlcrY39gMgJJEP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550182116</pqid></control><display><type>article</type><title>Ulam‐Hyers‐Rassias stability for generalized fractional differential equations</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Boucenna, Djalal ; Ben Makhlouf, Abdellatif ; El‐hady, El‐sayed ; Hammami, Mohamed Ali</creator><creatorcontrib>Boucenna, Djalal ; Ben Makhlouf, Abdellatif ; El‐hady, El‐sayed ; Hammami, Mohamed Ali</creatorcontrib><description>In this paper, we present a generalized Gronwall inequality with singularity. Using this inequality, we investigate the existence, uniqueness, and Ulam‐Hyers‐Rassias stability for solutions of a class of generalized nonlinear fractional differential equations of order α (1 &lt; α &lt; 2). In this way, we improve and generalize several earlier outcomes.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7406</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Differential equations ; generalized fractional derivative ; Mathematical analysis ; Mathematics ; Mathematics, Applied ; nonlinear fractional differential equations ; Physical Sciences ; Science &amp; Technology ; Stability ; Ulam–Hyers–Rassias stability</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10267-10280</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000639136000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2936-a8f23a7396db8742cded1b08ac9ce6dbd84191e7eec5ff9b3d0ce2beb26ac3803</citedby><cites>FETCH-LOGICAL-c2936-a8f23a7396db8742cded1b08ac9ce6dbd84191e7eec5ff9b3d0ce2beb26ac3803</cites><orcidid>0000-0002-4955-0842 ; 0000-0002-9347-4525 ; 0000-0001-7142-7026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7406$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7406$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,39265,45581,45582</link.rule.ids></links><search><creatorcontrib>Boucenna, Djalal</creatorcontrib><creatorcontrib>Ben Makhlouf, Abdellatif</creatorcontrib><creatorcontrib>El‐hady, El‐sayed</creatorcontrib><creatorcontrib>Hammami, Mohamed Ali</creatorcontrib><title>Ulam‐Hyers‐Rassias stability for generalized fractional differential equations</title><title>Mathematical methods in the applied sciences</title><addtitle>MATH METHOD APPL SCI</addtitle><description>In this paper, we present a generalized Gronwall inequality with singularity. Using this inequality, we investigate the existence, uniqueness, and Ulam‐Hyers‐Rassias stability for solutions of a class of generalized nonlinear fractional differential equations of order α (1 &lt; α &lt; 2). In this way, we improve and generalize several earlier outcomes.</description><subject>Differential equations</subject><subject>generalized fractional derivative</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>nonlinear fractional differential equations</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Stability</subject><subject>Ulam–Hyers–Rassias stability</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM9Kw0AQxhdRsFbBRwh4ESR1Z5NukmMJaoUWodhz2GxmZUv-tLsJEk8-gs_ok7hpizfBuXzM8Jvhm4-Qa6AToJTdV5WYRCHlJ2QENEl8CCN-SkYUIuqHDMJzcmHthlIaA7ARWa1LUX1_fs17NNbpSlirhfVsK3Jd6rb3VGO8N6zRiFJ_YOEpI2Srm1qUXqGVQoN1q12Du04Mc3tJzpQoLV4ddUzWjw-v6dxfvDw9p7OFL1kScF_EigUiChJe5HEUMllgATmNhUwkulkRh5AARohyqlSSBwWVyHLMGRcyiGkwJjeHu1vT7Dq0bbZpOuN82YxNpxRiBsAddXugpGmsNaiyrdGVMH0GNBsSy1xi2ZCYQ-MD-o55o6zUWEv8xV1kPEgg4HQoSHW7fzdturp1q3f_X3W0f6R1if2fhrLlcrY39gMgJJEP</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Boucenna, Djalal</creator><creator>Ben Makhlouf, Abdellatif</creator><creator>El‐hady, El‐sayed</creator><creator>Hammami, Mohamed Ali</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4955-0842</orcidid><orcidid>https://orcid.org/0000-0002-9347-4525</orcidid><orcidid>https://orcid.org/0000-0001-7142-7026</orcidid></search><sort><creationdate>20210915</creationdate><title>Ulam‐Hyers‐Rassias stability for generalized fractional differential equations</title><author>Boucenna, Djalal ; Ben Makhlouf, Abdellatif ; El‐hady, El‐sayed ; Hammami, Mohamed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-a8f23a7396db8742cded1b08ac9ce6dbd84191e7eec5ff9b3d0ce2beb26ac3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential equations</topic><topic>generalized fractional derivative</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>nonlinear fractional differential equations</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Stability</topic><topic>Ulam–Hyers–Rassias stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boucenna, Djalal</creatorcontrib><creatorcontrib>Ben Makhlouf, Abdellatif</creatorcontrib><creatorcontrib>El‐hady, El‐sayed</creatorcontrib><creatorcontrib>Hammami, Mohamed Ali</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boucenna, Djalal</au><au>Ben Makhlouf, Abdellatif</au><au>El‐hady, El‐sayed</au><au>Hammami, Mohamed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ulam‐Hyers‐Rassias stability for generalized fractional differential equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><stitle>MATH METHOD APPL SCI</stitle><date>2021-09-15</date><risdate>2021</risdate><volume>44</volume><issue>13</issue><spage>10267</spage><epage>10280</epage><pages>10267-10280</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we present a generalized Gronwall inequality with singularity. Using this inequality, we investigate the existence, uniqueness, and Ulam‐Hyers‐Rassias stability for solutions of a class of generalized nonlinear fractional differential equations of order α (1 &lt; α &lt; 2). In this way, we improve and generalize several earlier outcomes.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/mma.7406</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4955-0842</orcidid><orcidid>https://orcid.org/0000-0002-9347-4525</orcidid><orcidid>https://orcid.org/0000-0001-7142-7026</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-09, Vol.44 (13), p.10267-10280
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2550182116
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Differential equations
generalized fractional derivative
Mathematical analysis
Mathematics
Mathematics, Applied
nonlinear fractional differential equations
Physical Sciences
Science & Technology
Stability
Ulam–Hyers–Rassias stability
title Ulam‐Hyers‐Rassias stability for generalized fractional differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ulam%E2%80%90Hyers%E2%80%90Rassias%20stability%20for%20generalized%20fractional%20differential%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Boucenna,%20Djalal&rft.date=2021-09-15&rft.volume=44&rft.issue=13&rft.spage=10267&rft.epage=10280&rft.pages=10267-10280&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7406&rft_dat=%3Cproquest_webof%3E2550182116%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550182116&rft_id=info:pmid/&rfr_iscdi=true