Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two

We study convexity and symmetry of central configurations in the five body problem when three of the masses ara located at the vertices of an equilateral triangle, that we call Lagrange plus two central configurations . First, we prove that the two bodies out of the vertices of the triangle cannot b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2021-11, Vol.20 (3), Article 63
Hauptverfasser: Barrabés, E., Cors, J. M., Fernandes, A. C., Vidal, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Qualitative theory of dynamical systems
container_volume 20
creator Barrabés, E.
Cors, J. M.
Fernandes, A. C.
Vidal, C.
description We study convexity and symmetry of central configurations in the five body problem when three of the masses ara located at the vertices of an equilateral triangle, that we call Lagrange plus two central configurations . First, we prove that the two bodies out of the vertices of the triangle cannot be placed on certain lines. Next, we give a geometrical characterization of such configurations in the sense as that of Dziobek, and we describe the admissible regions where the two remaining bodies can be placed. Furthermore, we prove that any Lagrange plus two central configuration is concave. Finally, we show numerically the existence of non-symmetric central configurations of the five body problem.
doi_str_mv 10.1007/s12346-021-00504-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550055966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550055966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-c34b1f7c0a5a41cba999e07f4d8393b5182c071c70aad0801398cae3832a62543</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhosoeH0BVwGXUj25t-6keIMBN7oTQppJx8pMMiap2rc3Y0V3YhbJWXx_zjlfURxjOMMA8jxiQpkogeASgAMr5Vaxh4UgJeU12c41l7zkTMBusR_jC4AgkpK94qnx7s1-9GlE2s1RHFcrm8KIfIeMdSnoJTLedf1iCDr13kXUO5SeLer6N1u2fj6idfDt0q4u0EwvgnYLi9bLIaL07g-LnU4voz36fg-Kx-urh-a2nN3f3DWXs9JQzFK-WYs7aUBzzbBpdV3XFmTH5hWtactxRQxIbCRoPYcKMK0roy2tKNGCcEYPipPp3zzK62BjUi9-CC63VITzLITXQmSKTJQJPsZgO7UO_UqHUWFQG4tqsqiyRfVlUckcOp1C77b1XTS9dcb-BCF7lFgwApuDM139n2769KW08YNLOUqnaMx4lhh-d_hjvE-hs5Wk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550055966</pqid></control><display><type>article</type><title>Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>SpringerNature Journals</source><creator>Barrabés, E. ; Cors, J. M. ; Fernandes, A. C. ; Vidal, C.</creator><creatorcontrib>Barrabés, E. ; Cors, J. M. ; Fernandes, A. C. ; Vidal, C.</creatorcontrib><description>We study convexity and symmetry of central configurations in the five body problem when three of the masses ara located at the vertices of an equilateral triangle, that we call Lagrange plus two central configurations . First, we prove that the two bodies out of the vertices of the triangle cannot be placed on certain lines. Next, we give a geometrical characterization of such configurations in the sense as that of Dziobek, and we describe the admissible regions where the two remaining bodies can be placed. Furthermore, we prove that any Lagrange plus two central configuration is concave. Finally, we show numerically the existence of non-symmetric central configurations of the five body problem.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-021-00504-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Chaos theory ; Configurations ; Convexity ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Mathematics, Applied ; Physical Sciences ; Science &amp; Technology ; Symmetry ; Triangles</subject><ispartof>Qualitative theory of dynamical systems, 2021-11, Vol.20 (3), Article 63</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000671642000001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c314t-c34b1f7c0a5a41cba999e07f4d8393b5182c071c70aad0801398cae3832a62543</cites><orcidid>0000-0001-9297-5101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12346-021-00504-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12346-021-00504-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39263,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Barrabés, E.</creatorcontrib><creatorcontrib>Cors, J. M.</creatorcontrib><creatorcontrib>Fernandes, A. C.</creatorcontrib><creatorcontrib>Vidal, C.</creatorcontrib><title>Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><addtitle>QUAL THEOR DYN SYST</addtitle><description>We study convexity and symmetry of central configurations in the five body problem when three of the masses ara located at the vertices of an equilateral triangle, that we call Lagrange plus two central configurations . First, we prove that the two bodies out of the vertices of the triangle cannot be placed on certain lines. Next, we give a geometrical characterization of such configurations in the sense as that of Dziobek, and we describe the admissible regions where the two remaining bodies can be placed. Furthermore, we prove that any Lagrange plus two central configuration is concave. Finally, we show numerically the existence of non-symmetric central configurations of the five body problem.</description><subject>Apexes</subject><subject>Chaos theory</subject><subject>Configurations</subject><subject>Convexity</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Symmetry</subject><subject>Triangles</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMtKxDAUhosoeH0BVwGXUj25t-6keIMBN7oTQppJx8pMMiap2rc3Y0V3YhbJWXx_zjlfURxjOMMA8jxiQpkogeASgAMr5Vaxh4UgJeU12c41l7zkTMBusR_jC4AgkpK94qnx7s1-9GlE2s1RHFcrm8KIfIeMdSnoJTLedf1iCDr13kXUO5SeLer6N1u2fj6idfDt0q4u0EwvgnYLi9bLIaL07g-LnU4voz36fg-Kx-urh-a2nN3f3DWXs9JQzFK-WYs7aUBzzbBpdV3XFmTH5hWtactxRQxIbCRoPYcKMK0roy2tKNGCcEYPipPp3zzK62BjUi9-CC63VITzLITXQmSKTJQJPsZgO7UO_UqHUWFQG4tqsqiyRfVlUckcOp1C77b1XTS9dcb-BCF7lFgwApuDM139n2769KW08YNLOUqnaMx4lhh-d_hjvE-hs5Wk</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Barrabés, E.</creator><creator>Cors, J. M.</creator><creator>Fernandes, A. C.</creator><creator>Vidal, C.</creator><general>Springer International Publishing</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9297-5101</orcidid></search><sort><creationdate>20211101</creationdate><title>Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two</title><author>Barrabés, E. ; Cors, J. M. ; Fernandes, A. C. ; Vidal, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-c34b1f7c0a5a41cba999e07f4d8393b5182c071c70aad0801398cae3832a62543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Chaos theory</topic><topic>Configurations</topic><topic>Convexity</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Symmetry</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrabés, E.</creatorcontrib><creatorcontrib>Cors, J. M.</creatorcontrib><creatorcontrib>Fernandes, A. C.</creatorcontrib><creatorcontrib>Vidal, C.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrabés, E.</au><au>Cors, J. M.</au><au>Fernandes, A. C.</au><au>Vidal, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><stitle>QUAL THEOR DYN SYST</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><artnum>63</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>We study convexity and symmetry of central configurations in the five body problem when three of the masses ara located at the vertices of an equilateral triangle, that we call Lagrange plus two central configurations . First, we prove that the two bodies out of the vertices of the triangle cannot be placed on certain lines. Next, we give a geometrical characterization of such configurations in the sense as that of Dziobek, and we describe the admissible regions where the two remaining bodies can be placed. Furthermore, we prove that any Lagrange plus two central configuration is concave. Finally, we show numerically the existence of non-symmetric central configurations of the five body problem.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-021-00504-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9297-5101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1575-5460
ispartof Qualitative theory of dynamical systems, 2021-11, Vol.20 (3), Article 63
issn 1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_2550055966
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; SpringerNature Journals
subjects Apexes
Chaos theory
Configurations
Convexity
Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Mathematics, Applied
Physical Sciences
Science & Technology
Symmetry
Triangles
title Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convexity%20and%20symmetry%20of%20central%20configurations%20in%20the%20five-body%20problem:%20Lagrange%20plus%20two&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Barrab%C3%A9s,%20E.&rft.date=2021-11-01&rft.volume=20&rft.issue=3&rft.artnum=63&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-021-00504-7&rft_dat=%3Cproquest_cross%3E2550055966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550055966&rft_id=info:pmid/&rfr_iscdi=true