Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing
[Display omitted] •Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fos...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2021-09, Vol.300, p.120927, Article 120927 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120927 |
container_title | Fuel (Guildford) |
container_volume | 300 |
creator | Sztancs, Greta Kovacs, Attila Toth, Andras Jozsef Mizsey, Peter Billen, Pieter Fozer, Daniel |
description | [Display omitted]
•Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy.
This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation. |
doi_str_mv | 10.1016/j.fuel.2021.120927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549947936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121008048</els_id><sourcerecordid>2549947936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</originalsourceid><addsrcrecordid>eNp9kMFu1DAURS0EEkPpD3RliXUGO3biBLFBIwqVKrGha-vl5XnGo8Qe7Eyr6X_wvyQN667e5tx7nw5jN1JspZD15-PWnWnYlqKUW1mKtjRv2EY2RhVGVuot24iZKkpVy_fsQ85HIYRpKr1hf3cwwXCZPPLDpU9xOlAaYeAIqYvBP8PkY-DR8dFjijDsgXjn4wg5cxcTH-JTsbKcRp_zQp_iEyW-p0DpJf6Fz62cwqNPMYwU5kHuxxPglJfml108QOIYC-eTD_uP7J2DIdP1_3vFHm6__979LO5__bjbfbsvUJlyKqCj3mFlKtNr40B1ukbVGETTYQWITYPG9boVEoyp6xZUo7FBQKU1gqjVFfu09p5S_HOmPNljPKcwT9qy0m2rTasWqlyp2UDOiZw9JT9Culgp7KLfHu2i3y767ap_Dn1dQzT__-gp2YyeAlLvE-Fk--hfi_8D0faTKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549947936</pqid></control><display><type>article</type><title>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</title><source>Elsevier ScienceDirect Journals</source><creator>Sztancs, Greta ; Kovacs, Attila ; Toth, Andras Jozsef ; Mizsey, Peter ; Billen, Pieter ; Fozer, Daniel</creator><creatorcontrib>Sztancs, Greta ; Kovacs, Attila ; Toth, Andras Jozsef ; Mizsey, Peter ; Billen, Pieter ; Fozer, Daniel</creatorcontrib><description>[Display omitted]
•Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy.
This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.120927</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Algae ; Aquatic microorganisms ; Biofuel ; Biofuels ; Biomass ; Carbon ; Carbon dioxide ; Carbonization ; Catalysts ; Catalytic hydrothermal carbonization ; Co-firing ; Electric power generation ; Emissions ; Energy recovery ; Environmental impact ; Environmental indicators ; GHG footprint ; Greenhouse effect ; Greenhouse gases ; Hydrochar ; Hydrothermal reactions ; Indicators ; Life cycle analysis ; Life cycle assessment ; Life cycles ; Microalgae ; Solid fuels ; Variance analysis</subject><ispartof>Fuel (Guildford), 2021-09, Vol.300, p.120927, Article 120927</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</citedby><cites>FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.120927$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Sztancs, Greta</creatorcontrib><creatorcontrib>Kovacs, Attila</creatorcontrib><creatorcontrib>Toth, Andras Jozsef</creatorcontrib><creatorcontrib>Mizsey, Peter</creatorcontrib><creatorcontrib>Billen, Pieter</creatorcontrib><creatorcontrib>Fozer, Daniel</creatorcontrib><title>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy.
This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation.</description><subject>Acetic acid</subject><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biofuel</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbonization</subject><subject>Catalysts</subject><subject>Catalytic hydrothermal carbonization</subject><subject>Co-firing</subject><subject>Electric power generation</subject><subject>Emissions</subject><subject>Energy recovery</subject><subject>Environmental impact</subject><subject>Environmental indicators</subject><subject>GHG footprint</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrochar</subject><subject>Hydrothermal reactions</subject><subject>Indicators</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycles</subject><subject>Microalgae</subject><subject>Solid fuels</subject><subject>Variance analysis</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAURS0EEkPpD3RliXUGO3biBLFBIwqVKrGha-vl5XnGo8Qe7Eyr6X_wvyQN667e5tx7nw5jN1JspZD15-PWnWnYlqKUW1mKtjRv2EY2RhVGVuot24iZKkpVy_fsQ85HIYRpKr1hf3cwwXCZPPLDpU9xOlAaYeAIqYvBP8PkY-DR8dFjijDsgXjn4wg5cxcTH-JTsbKcRp_zQp_iEyW-p0DpJf6Fz62cwqNPMYwU5kHuxxPglJfml108QOIYC-eTD_uP7J2DIdP1_3vFHm6__979LO5__bjbfbsvUJlyKqCj3mFlKtNr40B1ukbVGETTYQWITYPG9boVEoyp6xZUo7FBQKU1gqjVFfu09p5S_HOmPNljPKcwT9qy0m2rTasWqlyp2UDOiZw9JT9Culgp7KLfHu2i3y767ap_Dn1dQzT__-gp2YyeAlLvE-Fk--hfi_8D0faTKg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Sztancs, Greta</creator><creator>Kovacs, Attila</creator><creator>Toth, Andras Jozsef</creator><creator>Mizsey, Peter</creator><creator>Billen, Pieter</creator><creator>Fozer, Daniel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210915</creationdate><title>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</title><author>Sztancs, Greta ; Kovacs, Attila ; Toth, Andras Jozsef ; Mizsey, Peter ; Billen, Pieter ; Fozer, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biofuel</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbonization</topic><topic>Catalysts</topic><topic>Catalytic hydrothermal carbonization</topic><topic>Co-firing</topic><topic>Electric power generation</topic><topic>Emissions</topic><topic>Energy recovery</topic><topic>Environmental impact</topic><topic>Environmental indicators</topic><topic>GHG footprint</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrochar</topic><topic>Hydrothermal reactions</topic><topic>Indicators</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycles</topic><topic>Microalgae</topic><topic>Solid fuels</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sztancs, Greta</creatorcontrib><creatorcontrib>Kovacs, Attila</creatorcontrib><creatorcontrib>Toth, Andras Jozsef</creatorcontrib><creatorcontrib>Mizsey, Peter</creatorcontrib><creatorcontrib>Billen, Pieter</creatorcontrib><creatorcontrib>Fozer, Daniel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sztancs, Greta</au><au>Kovacs, Attila</au><au>Toth, Andras Jozsef</au><au>Mizsey, Peter</au><au>Billen, Pieter</au><au>Fozer, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>300</volume><spage>120927</spage><pages>120927-</pages><artnum>120927</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy.
This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.120927</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-09, Vol.300, p.120927, Article 120927 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2549947936 |
source | Elsevier ScienceDirect Journals |
subjects | Acetic acid Algae Aquatic microorganisms Biofuel Biofuels Biomass Carbon Carbon dioxide Carbonization Catalysts Catalytic hydrothermal carbonization Co-firing Electric power generation Emissions Energy recovery Environmental impact Environmental indicators GHG footprint Greenhouse effect Greenhouse gases Hydrochar Hydrothermal reactions Indicators Life cycle analysis Life cycle assessment Life cycles Microalgae Solid fuels Variance analysis |
title | Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20hydrothermal%20carbonization%20of%20microalgae%20biomass%20for%20low-carbon%20emission%20power%20generation:%20the%20environmental%20impacts%20of%20hydrochar%20co-firing&rft.jtitle=Fuel%20(Guildford)&rft.au=Sztancs,%20Greta&rft.date=2021-09-15&rft.volume=300&rft.spage=120927&rft.pages=120927-&rft.artnum=120927&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.120927&rft_dat=%3Cproquest_cross%3E2549947936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549947936&rft_id=info:pmid/&rft_els_id=S0016236121008048&rfr_iscdi=true |