Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing

[Display omitted] •Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-09, Vol.300, p.120927, Article 120927
Hauptverfasser: Sztancs, Greta, Kovacs, Attila, Toth, Andras Jozsef, Mizsey, Peter, Billen, Pieter, Fozer, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120927
container_title Fuel (Guildford)
container_volume 300
creator Sztancs, Greta
Kovacs, Attila
Toth, Andras Jozsef
Mizsey, Peter
Billen, Pieter
Fozer, Daniel
description [Display omitted] •Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy. This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation.
doi_str_mv 10.1016/j.fuel.2021.120927
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549947936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121008048</els_id><sourcerecordid>2549947936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</originalsourceid><addsrcrecordid>eNp9kMFu1DAURS0EEkPpD3RliXUGO3biBLFBIwqVKrGha-vl5XnGo8Qe7Eyr6X_wvyQN667e5tx7nw5jN1JspZD15-PWnWnYlqKUW1mKtjRv2EY2RhVGVuot24iZKkpVy_fsQ85HIYRpKr1hf3cwwXCZPPLDpU9xOlAaYeAIqYvBP8PkY-DR8dFjijDsgXjn4wg5cxcTH-JTsbKcRp_zQp_iEyW-p0DpJf6Fz62cwqNPMYwU5kHuxxPglJfml108QOIYC-eTD_uP7J2DIdP1_3vFHm6__979LO5__bjbfbsvUJlyKqCj3mFlKtNr40B1ukbVGETTYQWITYPG9boVEoyp6xZUo7FBQKU1gqjVFfu09p5S_HOmPNljPKcwT9qy0m2rTasWqlyp2UDOiZw9JT9Culgp7KLfHu2i3y767ap_Dn1dQzT__-gp2YyeAlLvE-Fk--hfi_8D0faTKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549947936</pqid></control><display><type>article</type><title>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</title><source>Elsevier ScienceDirect Journals</source><creator>Sztancs, Greta ; Kovacs, Attila ; Toth, Andras Jozsef ; Mizsey, Peter ; Billen, Pieter ; Fozer, Daniel</creator><creatorcontrib>Sztancs, Greta ; Kovacs, Attila ; Toth, Andras Jozsef ; Mizsey, Peter ; Billen, Pieter ; Fozer, Daniel</creatorcontrib><description>[Display omitted] •Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy. This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.120927</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Algae ; Aquatic microorganisms ; Biofuel ; Biofuels ; Biomass ; Carbon ; Carbon dioxide ; Carbonization ; Catalysts ; Catalytic hydrothermal carbonization ; Co-firing ; Electric power generation ; Emissions ; Energy recovery ; Environmental impact ; Environmental indicators ; GHG footprint ; Greenhouse effect ; Greenhouse gases ; Hydrochar ; Hydrothermal reactions ; Indicators ; Life cycle analysis ; Life cycle assessment ; Life cycles ; Microalgae ; Solid fuels ; Variance analysis</subject><ispartof>Fuel (Guildford), 2021-09, Vol.300, p.120927, Article 120927</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</citedby><cites>FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.120927$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Sztancs, Greta</creatorcontrib><creatorcontrib>Kovacs, Attila</creatorcontrib><creatorcontrib>Toth, Andras Jozsef</creatorcontrib><creatorcontrib>Mizsey, Peter</creatorcontrib><creatorcontrib>Billen, Pieter</creatorcontrib><creatorcontrib>Fozer, Daniel</creatorcontrib><title>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</title><title>Fuel (Guildford)</title><description>[Display omitted] •Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy. This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation.</description><subject>Acetic acid</subject><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biofuel</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbonization</subject><subject>Catalysts</subject><subject>Catalytic hydrothermal carbonization</subject><subject>Co-firing</subject><subject>Electric power generation</subject><subject>Emissions</subject><subject>Energy recovery</subject><subject>Environmental impact</subject><subject>Environmental indicators</subject><subject>GHG footprint</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrochar</subject><subject>Hydrothermal reactions</subject><subject>Indicators</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycles</subject><subject>Microalgae</subject><subject>Solid fuels</subject><subject>Variance analysis</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAURS0EEkPpD3RliXUGO3biBLFBIwqVKrGha-vl5XnGo8Qe7Eyr6X_wvyQN667e5tx7nw5jN1JspZD15-PWnWnYlqKUW1mKtjRv2EY2RhVGVuot24iZKkpVy_fsQ85HIYRpKr1hf3cwwXCZPPLDpU9xOlAaYeAIqYvBP8PkY-DR8dFjijDsgXjn4wg5cxcTH-JTsbKcRp_zQp_iEyW-p0DpJf6Fz62cwqNPMYwU5kHuxxPglJfml108QOIYC-eTD_uP7J2DIdP1_3vFHm6__979LO5__bjbfbsvUJlyKqCj3mFlKtNr40B1ukbVGETTYQWITYPG9boVEoyp6xZUo7FBQKU1gqjVFfu09p5S_HOmPNljPKcwT9qy0m2rTasWqlyp2UDOiZw9JT9Culgp7KLfHu2i3y767ap_Dn1dQzT__-gp2YyeAlLvE-Fk--hfi_8D0faTKg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Sztancs, Greta</creator><creator>Kovacs, Attila</creator><creator>Toth, Andras Jozsef</creator><creator>Mizsey, Peter</creator><creator>Billen, Pieter</creator><creator>Fozer, Daniel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210915</creationdate><title>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</title><author>Sztancs, Greta ; Kovacs, Attila ; Toth, Andras Jozsef ; Mizsey, Peter ; Billen, Pieter ; Fozer, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-abedfc5757d47fa3b46c387cc7bc5acc88c7fd4901a77669a384c8cac344ca063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biofuel</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbonization</topic><topic>Catalysts</topic><topic>Catalytic hydrothermal carbonization</topic><topic>Co-firing</topic><topic>Electric power generation</topic><topic>Emissions</topic><topic>Energy recovery</topic><topic>Environmental impact</topic><topic>Environmental indicators</topic><topic>GHG footprint</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrochar</topic><topic>Hydrothermal reactions</topic><topic>Indicators</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycles</topic><topic>Microalgae</topic><topic>Solid fuels</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sztancs, Greta</creatorcontrib><creatorcontrib>Kovacs, Attila</creatorcontrib><creatorcontrib>Toth, Andras Jozsef</creatorcontrib><creatorcontrib>Mizsey, Peter</creatorcontrib><creatorcontrib>Billen, Pieter</creatorcontrib><creatorcontrib>Fozer, Daniel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sztancs, Greta</au><au>Kovacs, Attila</au><au>Toth, Andras Jozsef</au><au>Mizsey, Peter</au><au>Billen, Pieter</au><au>Fozer, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>300</volume><spage>120927</spage><pages>120927-</pages><artnum>120927</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Microalgae biomass-based catalytic hydrochar for co-firing applications.•Catalytic hydrothermal carbonization to produce high-quality biofuel blends.•Increased greenhouse gas emission reduction potentials.•Enhanced decarbonization can be reached by using 43.9% co-firing ratio.•Fossil fuel partial substitution and efficiency improvement for low-carbon energy. This work aims to improve the synthesis of renewable hydrochar (HC) co-fired with coal to reduce grenhouse gas (GHG) emission. Acetic acid catalyzed hydrothermal carbonization (cHTC) of Chlorella vulgaris microalgae biomass was investigated based on a 33−1 fractional statistical design of the experiment to examine the effects of hydrothermal reaction temperature (T = 180–220 °C), biomass-to-suspension- (BSR = 5–25 wt.%), and catalyst-to-suspension (CSR = 0–10 wt.%) ratios on process performance indicators. Analysis of variance was used to assess the experimental data. The results show that the application of homogeneous catalyst improves the fuel ratio and energy recovery efficiency up to 0.38 and 36.3%. Ex-ante cradle-to-gate life cycle assessment was performed to evaluate the impacts of co-firing ratio (CFR) and hydrochar quality on multi-perspective mid-, and endpoint environmental indicators. The highest decarbonization potential (−1.54 kg CO2,eq kWh−1) is achieved using catalytic hydrochar biofuel produced at 195 °C, 25 wt.% BSR, and 8 wt.% CSR levels. The application of catalytic and autocatalytic hydrochar blends improves the overall environmental impacts and greenhouse gas footprint of solid fuel firing facilitating the transition toward low-carbon emission power generation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.120927</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-09, Vol.300, p.120927, Article 120927
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2549947936
source Elsevier ScienceDirect Journals
subjects Acetic acid
Algae
Aquatic microorganisms
Biofuel
Biofuels
Biomass
Carbon
Carbon dioxide
Carbonization
Catalysts
Catalytic hydrothermal carbonization
Co-firing
Electric power generation
Emissions
Energy recovery
Environmental impact
Environmental indicators
GHG footprint
Greenhouse effect
Greenhouse gases
Hydrochar
Hydrothermal reactions
Indicators
Life cycle analysis
Life cycle assessment
Life cycles
Microalgae
Solid fuels
Variance analysis
title Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20hydrothermal%20carbonization%20of%20microalgae%20biomass%20for%20low-carbon%20emission%20power%20generation:%20the%20environmental%20impacts%20of%20hydrochar%20co-firing&rft.jtitle=Fuel%20(Guildford)&rft.au=Sztancs,%20Greta&rft.date=2021-09-15&rft.volume=300&rft.spage=120927&rft.pages=120927-&rft.artnum=120927&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.120927&rft_dat=%3Cproquest_cross%3E2549947936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549947936&rft_id=info:pmid/&rft_els_id=S0016236121008048&rfr_iscdi=true