68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance

For solar cells operating under the broad‐band solar spectrum, the photovoltaic conversion efficiency is fundamentally limited by transmission and thermalization losses. For monochromatic light, these losses can be minimized by matching the photon energy and the absorber material's bandgap ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2021-07, Vol.15 (7), p.n/a
Hauptverfasser: Helmers, Henning, Lopez, Esther, Höhn, Oliver, Lackner, David, Schön, Jonas, Schauerte, Meike, Schachtner, Michael, Dimroth, Frank, Bett, Andreas W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 15
creator Helmers, Henning
Lopez, Esther
Höhn, Oliver
Lackner, David
Schön, Jonas
Schauerte, Meike
Schachtner, Michael
Dimroth, Frank
Bett, Andreas W.
description For solar cells operating under the broad‐band solar spectrum, the photovoltaic conversion efficiency is fundamentally limited by transmission and thermalization losses. For monochromatic light, these losses can be minimized by matching the photon energy and the absorber material's bandgap energy. Furthermore, for high‐crystal‐quality direct semiconductors, radiative recombination dominates the minority carrier recombination. Light‐trapping schemes can leverage reabsorption of thereby internally generated photons. Such photon recycling increases the effective excess carrier concentration, which, in turn, increases photovoltage and consequently conversion efficiency. Herein, a back surface reflector underneath a GaAs/AlGaAs rear‐heterojunction structure leverages photon recycling to effectively reduce radiative recombination losses and therefore boost the photovoltage. At the same time, resonance in the created optical cavity is tailored to enhance near‐bandgap absorption and, thus, minimize thermalization loss. With a thin film process and a combined dielectric–metal reflector, an unprecedented photovoltaic conversion efficiency of 68.9 ± 2.8% under 858 nm monochromatic light at an irradiance of 11.4 W cm−2 is demonstrated. A thin film GaAs/AlGaAs rear‐heterojunction photonic power converter with a back reflector is presented. Photon recycling is leveraged to increase the excess carrier density and consequently the output voltage. Optical resonance yields highest absorptance for near‐bandgap photons. Thereby thermalization losses are minimized without compromising minimal transmission. A photovoltaic conversion efficiency of 68.9% for 858 nm monochromatic light is demonstrated.
doi_str_mv 10.1002/pssr.202100113
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549909886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549909886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-7a6af9faa906647ab2db6826ceb2e42f07a461c48ca0f7a632d8ad45668a16ad3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEqWwMltCjAm2kzjOWKpSkCq1amGOLo5NXQU7xClVNh6BZ-RJcFVURiafT99_p_uC4JrgiGBM7xrn2ohi6j-ExCfBgHBGQ0YzfHqs0-Q8uHBug3GaZ0k8CNaMR_ktmiilhZamQ1MYue_Pr3twskKLte2s0QIt7E62aGzNh2ydtgZNDJS1J8r-F0JLKXpRa_OKwFRo3nRaQO27zhowQl4GZwpqJ69-32Hw8jB5Hj-Gs_n0aTyahSJOszjMgIHKFUCOGUsyKGlVMk6ZkCWVCVU4g4QRkXABWHk4phWHKkkZ40AYVPEwuDnMbVr7vpWuKzZ22xq_svDX5znOOWeeig6UaK3XJlXRtPoN2r4guNjbLPY2i6NNH8gPgZ2uZf8PXSxWq-Vf9gcVNHns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549909886</pqid></control><display><type>article</type><title>68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Helmers, Henning ; Lopez, Esther ; Höhn, Oliver ; Lackner, David ; Schön, Jonas ; Schauerte, Meike ; Schachtner, Michael ; Dimroth, Frank ; Bett, Andreas W.</creator><creatorcontrib>Helmers, Henning ; Lopez, Esther ; Höhn, Oliver ; Lackner, David ; Schön, Jonas ; Schauerte, Meike ; Schachtner, Michael ; Dimroth, Frank ; Bett, Andreas W.</creatorcontrib><description>For solar cells operating under the broad‐band solar spectrum, the photovoltaic conversion efficiency is fundamentally limited by transmission and thermalization losses. For monochromatic light, these losses can be minimized by matching the photon energy and the absorber material's bandgap energy. Furthermore, for high‐crystal‐quality direct semiconductors, radiative recombination dominates the minority carrier recombination. Light‐trapping schemes can leverage reabsorption of thereby internally generated photons. Such photon recycling increases the effective excess carrier concentration, which, in turn, increases photovoltage and consequently conversion efficiency. Herein, a back surface reflector underneath a GaAs/AlGaAs rear‐heterojunction structure leverages photon recycling to effectively reduce radiative recombination losses and therefore boost the photovoltage. At the same time, resonance in the created optical cavity is tailored to enhance near‐bandgap absorption and, thus, minimize thermalization loss. With a thin film process and a combined dielectric–metal reflector, an unprecedented photovoltaic conversion efficiency of 68.9 ± 2.8% under 858 nm monochromatic light at an irradiance of 11.4 W cm−2 is demonstrated. A thin film GaAs/AlGaAs rear‐heterojunction photonic power converter with a back reflector is presented. Photon recycling is leveraged to increase the excess carrier density and consequently the output voltage. Optical resonance yields highest absorptance for near‐bandgap photons. Thereby thermalization losses are minimized without compromising minimal transmission. A photovoltaic conversion efficiency of 68.9% for 858 nm monochromatic light is demonstrated.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202100113</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>back reflectors ; Carrier density ; Carrier recombination ; Efficiency ; Energy conversion efficiency ; Energy gap ; Gallium arsenide ; Heterojunctions ; Irradiance ; Minority carriers ; optical power transmission ; Optical resonance ; photon recycling ; photonic power converters ; Photons ; Photovoltaic cells ; Photovoltaic conversion ; Radiative recombination ; resonance ; Solar cells ; Thermalization (energy absorption) ; Thin films</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2021-07, Vol.15 (7), p.n/a</ispartof><rights>2021 The Authors. physica status solidi (RRL) Rapid Research Letters published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-7a6af9faa906647ab2db6826ceb2e42f07a461c48ca0f7a632d8ad45668a16ad3</citedby><cites>FETCH-LOGICAL-c3573-7a6af9faa906647ab2db6826ceb2e42f07a461c48ca0f7a632d8ad45668a16ad3</cites><orcidid>0000-0002-5991-2878 ; 0000-0003-1660-7651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202100113$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202100113$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Helmers, Henning</creatorcontrib><creatorcontrib>Lopez, Esther</creatorcontrib><creatorcontrib>Höhn, Oliver</creatorcontrib><creatorcontrib>Lackner, David</creatorcontrib><creatorcontrib>Schön, Jonas</creatorcontrib><creatorcontrib>Schauerte, Meike</creatorcontrib><creatorcontrib>Schachtner, Michael</creatorcontrib><creatorcontrib>Dimroth, Frank</creatorcontrib><creatorcontrib>Bett, Andreas W.</creatorcontrib><title>68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>For solar cells operating under the broad‐band solar spectrum, the photovoltaic conversion efficiency is fundamentally limited by transmission and thermalization losses. For monochromatic light, these losses can be minimized by matching the photon energy and the absorber material's bandgap energy. Furthermore, for high‐crystal‐quality direct semiconductors, radiative recombination dominates the minority carrier recombination. Light‐trapping schemes can leverage reabsorption of thereby internally generated photons. Such photon recycling increases the effective excess carrier concentration, which, in turn, increases photovoltage and consequently conversion efficiency. Herein, a back surface reflector underneath a GaAs/AlGaAs rear‐heterojunction structure leverages photon recycling to effectively reduce radiative recombination losses and therefore boost the photovoltage. At the same time, resonance in the created optical cavity is tailored to enhance near‐bandgap absorption and, thus, minimize thermalization loss. With a thin film process and a combined dielectric–metal reflector, an unprecedented photovoltaic conversion efficiency of 68.9 ± 2.8% under 858 nm monochromatic light at an irradiance of 11.4 W cm−2 is demonstrated. A thin film GaAs/AlGaAs rear‐heterojunction photonic power converter with a back reflector is presented. Photon recycling is leveraged to increase the excess carrier density and consequently the output voltage. Optical resonance yields highest absorptance for near‐bandgap photons. Thereby thermalization losses are minimized without compromising minimal transmission. A photovoltaic conversion efficiency of 68.9% for 858 nm monochromatic light is demonstrated.</description><subject>back reflectors</subject><subject>Carrier density</subject><subject>Carrier recombination</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Gallium arsenide</subject><subject>Heterojunctions</subject><subject>Irradiance</subject><subject>Minority carriers</subject><subject>optical power transmission</subject><subject>Optical resonance</subject><subject>photon recycling</subject><subject>photonic power converters</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Radiative recombination</subject><subject>resonance</subject><subject>Solar cells</subject><subject>Thermalization (energy absorption)</subject><subject>Thin films</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLFOwzAQhiMEEqWwMltCjAm2kzjOWKpSkCq1amGOLo5NXQU7xClVNh6BZ-RJcFVURiafT99_p_uC4JrgiGBM7xrn2ohi6j-ExCfBgHBGQ0YzfHqs0-Q8uHBug3GaZ0k8CNaMR_ktmiilhZamQ1MYue_Pr3twskKLte2s0QIt7E62aGzNh2ydtgZNDJS1J8r-F0JLKXpRa_OKwFRo3nRaQO27zhowQl4GZwpqJ69-32Hw8jB5Hj-Gs_n0aTyahSJOszjMgIHKFUCOGUsyKGlVMk6ZkCWVCVU4g4QRkXABWHk4phWHKkkZ40AYVPEwuDnMbVr7vpWuKzZ22xq_svDX5znOOWeeig6UaK3XJlXRtPoN2r4guNjbLPY2i6NNH8gPgZ2uZf8PXSxWq-Vf9gcVNHns</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Helmers, Henning</creator><creator>Lopez, Esther</creator><creator>Höhn, Oliver</creator><creator>Lackner, David</creator><creator>Schön, Jonas</creator><creator>Schauerte, Meike</creator><creator>Schachtner, Michael</creator><creator>Dimroth, Frank</creator><creator>Bett, Andreas W.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5991-2878</orcidid><orcidid>https://orcid.org/0000-0003-1660-7651</orcidid></search><sort><creationdate>202107</creationdate><title>68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance</title><author>Helmers, Henning ; Lopez, Esther ; Höhn, Oliver ; Lackner, David ; Schön, Jonas ; Schauerte, Meike ; Schachtner, Michael ; Dimroth, Frank ; Bett, Andreas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-7a6af9faa906647ab2db6826ceb2e42f07a461c48ca0f7a632d8ad45668a16ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>back reflectors</topic><topic>Carrier density</topic><topic>Carrier recombination</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Gallium arsenide</topic><topic>Heterojunctions</topic><topic>Irradiance</topic><topic>Minority carriers</topic><topic>optical power transmission</topic><topic>Optical resonance</topic><topic>photon recycling</topic><topic>photonic power converters</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Radiative recombination</topic><topic>resonance</topic><topic>Solar cells</topic><topic>Thermalization (energy absorption)</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmers, Henning</creatorcontrib><creatorcontrib>Lopez, Esther</creatorcontrib><creatorcontrib>Höhn, Oliver</creatorcontrib><creatorcontrib>Lackner, David</creatorcontrib><creatorcontrib>Schön, Jonas</creatorcontrib><creatorcontrib>Schauerte, Meike</creatorcontrib><creatorcontrib>Schachtner, Michael</creatorcontrib><creatorcontrib>Dimroth, Frank</creatorcontrib><creatorcontrib>Bett, Andreas W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmers, Henning</au><au>Lopez, Esther</au><au>Höhn, Oliver</au><au>Lackner, David</au><au>Schön, Jonas</au><au>Schauerte, Meike</au><au>Schachtner, Michael</au><au>Dimroth, Frank</au><au>Bett, Andreas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2021-07</date><risdate>2021</risdate><volume>15</volume><issue>7</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>For solar cells operating under the broad‐band solar spectrum, the photovoltaic conversion efficiency is fundamentally limited by transmission and thermalization losses. For monochromatic light, these losses can be minimized by matching the photon energy and the absorber material's bandgap energy. Furthermore, for high‐crystal‐quality direct semiconductors, radiative recombination dominates the minority carrier recombination. Light‐trapping schemes can leverage reabsorption of thereby internally generated photons. Such photon recycling increases the effective excess carrier concentration, which, in turn, increases photovoltage and consequently conversion efficiency. Herein, a back surface reflector underneath a GaAs/AlGaAs rear‐heterojunction structure leverages photon recycling to effectively reduce radiative recombination losses and therefore boost the photovoltage. At the same time, resonance in the created optical cavity is tailored to enhance near‐bandgap absorption and, thus, minimize thermalization loss. With a thin film process and a combined dielectric–metal reflector, an unprecedented photovoltaic conversion efficiency of 68.9 ± 2.8% under 858 nm monochromatic light at an irradiance of 11.4 W cm−2 is demonstrated. A thin film GaAs/AlGaAs rear‐heterojunction photonic power converter with a back reflector is presented. Photon recycling is leveraged to increase the excess carrier density and consequently the output voltage. Optical resonance yields highest absorptance for near‐bandgap photons. Thereby thermalization losses are minimized without compromising minimal transmission. A photovoltaic conversion efficiency of 68.9% for 858 nm monochromatic light is demonstrated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202100113</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5991-2878</orcidid><orcidid>https://orcid.org/0000-0003-1660-7651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2021-07, Vol.15 (7), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2549909886
source Wiley Online Library Journals Frontfile Complete
subjects back reflectors
Carrier density
Carrier recombination
Efficiency
Energy conversion efficiency
Energy gap
Gallium arsenide
Heterojunctions
Irradiance
Minority carriers
optical power transmission
Optical resonance
photon recycling
photonic power converters
Photons
Photovoltaic cells
Photovoltaic conversion
Radiative recombination
resonance
Solar cells
Thermalization (energy absorption)
Thin films
title 68.9% Efficient GaAs‐Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=68.9%25%20Efficient%20GaAs%E2%80%90Based%20Photonic%20Power%20Conversion%20Enabled%20by%20Photon%20Recycling%20and%20Optical%20Resonance&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Helmers,%20Henning&rft.date=2021-07&rft.volume=15&rft.issue=7&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202100113&rft_dat=%3Cproquest_cross%3E2549909886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549909886&rft_id=info:pmid/&rfr_iscdi=true