CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation

Glaucoma is a leading cause of blindness. Accurate and efficient segmentation of the optic disc and cup from fundus images is important for glaucoma screening. However, using off-the-shelf networks against new datasets may lead to degraded performances due to domain shift. To address this issue, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2021-08, Vol.51 (8), p.5701-5725
Hauptverfasser: Guo, Yanfei, Peng, Yanjun, Zhang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5725
container_issue 8
container_start_page 5701
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 51
creator Guo, Yanfei
Peng, Yanjun
Zhang, Bin
description Glaucoma is a leading cause of blindness. Accurate and efficient segmentation of the optic disc and cup from fundus images is important for glaucoma screening. However, using off-the-shelf networks against new datasets may lead to degraded performances due to domain shift. To address this issue, in this paper, we propose a coarse-to-fine adaptive Faster R-CNN framework for cross-domain joint optic disc and cup segmentation. The proposed CAFR-CNN consists of the Faster R-CNN detector, a spatial attention-based region alignment module, a pyramid ROI alignment module and a prototype-based semantic alignment module. The Faster R-CNN detector extracts features from fundus images using a VGG16 network as a backbone. The spatial attention-based region alignment module extracts the region of interest through a spatial mechanism and aligns the feature distribution from different domains via multilayer adversarial learning to achieve a coarse-grained adaptation. The pyramid ROI alignment module learns multilevel contextual features to prevent misclassifications due to the similar appearances of the optic disc and cup. The prototype-based semantic alignment module minimizes the distance of global prototypes with the same category between the target domain and source domain to achieve a fine-grained adaptation. We evaluated the proposed CAFR-CNN framework under different scenarios constructed from four public retinal fundus image datasets (REFUGE2, DRISHTI-GS, DRIONS-DB and RIM-ONE-r3). The experimental results show that the proposed method outperforms the current state-of-the-art methods and has good accuracy and robustness: it not only avoids the adverse effects of low contrast and noise interference but also preserves the shape priors and generates more accurate contours.
doi_str_mv 10.1007/s10489-020-02145-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2549837899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549837899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dcbb3a5cfec0e19b665bbc42b927e1c4e905a576f5540e680311c9dc691ae1c3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTrZJLsbb6VYFUoF6cFbyGazZYtN1iS1-PbGruDNwzCH-f4Z5kPomsItBajuIgVeSwIF5KJckMMJmlBRMVJxWZ2iCciCk7KUb-foIsYtADAGdILsfLZ4JfPV6h4br0O0JHnS9c5i3eoh9Z8WdzomG_CRwp0P2AQfI2n9TvcOb33vEvYZNbjto8HatdjsBxztZmdd0qn37hKddfo92qvfPkXrxcN6_kSWL4_P89mSGEZlIq1pGqaF6awBS2VTlqJpDC8aWVSWGm4lCC2qshOCgy1rYJQa2ZpSUp3nbIpuxrVD8B97G5Pa-n1w-aIqBJc1q2opM1WM1PGPYDs1hH6nw5eioH5sqtGmyjbV0aY65BAbQzHDbmPD3-p_Ut_ko3hC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549837899</pqid></control><display><type>article</type><title>CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation</title><source>Springer Nature - Complete Springer Journals</source><creator>Guo, Yanfei ; Peng, Yanjun ; Zhang, Bin</creator><creatorcontrib>Guo, Yanfei ; Peng, Yanjun ; Zhang, Bin</creatorcontrib><description>Glaucoma is a leading cause of blindness. Accurate and efficient segmentation of the optic disc and cup from fundus images is important for glaucoma screening. However, using off-the-shelf networks against new datasets may lead to degraded performances due to domain shift. To address this issue, in this paper, we propose a coarse-to-fine adaptive Faster R-CNN framework for cross-domain joint optic disc and cup segmentation. The proposed CAFR-CNN consists of the Faster R-CNN detector, a spatial attention-based region alignment module, a pyramid ROI alignment module and a prototype-based semantic alignment module. The Faster R-CNN detector extracts features from fundus images using a VGG16 network as a backbone. The spatial attention-based region alignment module extracts the region of interest through a spatial mechanism and aligns the feature distribution from different domains via multilayer adversarial learning to achieve a coarse-grained adaptation. The pyramid ROI alignment module learns multilevel contextual features to prevent misclassifications due to the similar appearances of the optic disc and cup. The prototype-based semantic alignment module minimizes the distance of global prototypes with the same category between the target domain and source domain to achieve a fine-grained adaptation. We evaluated the proposed CAFR-CNN framework under different scenarios constructed from four public retinal fundus image datasets (REFUGE2, DRISHTI-GS, DRIONS-DB and RIM-ONE-r3). The experimental results show that the proposed method outperforms the current state-of-the-art methods and has good accuracy and robustness: it not only avoids the adverse effects of low contrast and noise interference but also preserves the shape priors and generates more accurate contours.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-020-02145-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Alignment ; Artificial Intelligence ; Blindness ; Computer Science ; Datasets ; Domains ; Feature extraction ; Glaucoma ; Image segmentation ; Machines ; Manufacturing ; Mechanical Engineering ; Modules ; Multilayers ; Processes ; Prototypes ; Semantics</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2021-08, Vol.51 (8), p.5701-5725</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dcbb3a5cfec0e19b665bbc42b927e1c4e905a576f5540e680311c9dc691ae1c3</citedby><cites>FETCH-LOGICAL-c319t-dcbb3a5cfec0e19b665bbc42b927e1c4e905a576f5540e680311c9dc691ae1c3</cites><orcidid>0000-0003-1652-3861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-020-02145-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-020-02145-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Guo, Yanfei</creatorcontrib><creatorcontrib>Peng, Yanjun</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><title>CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Glaucoma is a leading cause of blindness. Accurate and efficient segmentation of the optic disc and cup from fundus images is important for glaucoma screening. However, using off-the-shelf networks against new datasets may lead to degraded performances due to domain shift. To address this issue, in this paper, we propose a coarse-to-fine adaptive Faster R-CNN framework for cross-domain joint optic disc and cup segmentation. The proposed CAFR-CNN consists of the Faster R-CNN detector, a spatial attention-based region alignment module, a pyramid ROI alignment module and a prototype-based semantic alignment module. The Faster R-CNN detector extracts features from fundus images using a VGG16 network as a backbone. The spatial attention-based region alignment module extracts the region of interest through a spatial mechanism and aligns the feature distribution from different domains via multilayer adversarial learning to achieve a coarse-grained adaptation. The pyramid ROI alignment module learns multilevel contextual features to prevent misclassifications due to the similar appearances of the optic disc and cup. The prototype-based semantic alignment module minimizes the distance of global prototypes with the same category between the target domain and source domain to achieve a fine-grained adaptation. We evaluated the proposed CAFR-CNN framework under different scenarios constructed from four public retinal fundus image datasets (REFUGE2, DRISHTI-GS, DRIONS-DB and RIM-ONE-r3). The experimental results show that the proposed method outperforms the current state-of-the-art methods and has good accuracy and robustness: it not only avoids the adverse effects of low contrast and noise interference but also preserves the shape priors and generates more accurate contours.</description><subject>Adaptation</subject><subject>Alignment</subject><subject>Artificial Intelligence</subject><subject>Blindness</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Glaucoma</subject><subject>Image segmentation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Modules</subject><subject>Multilayers</subject><subject>Processes</subject><subject>Prototypes</subject><subject>Semantics</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTrZJLsbb6VYFUoF6cFbyGazZYtN1iS1-PbGruDNwzCH-f4Z5kPomsItBajuIgVeSwIF5KJckMMJmlBRMVJxWZ2iCciCk7KUb-foIsYtADAGdILsfLZ4JfPV6h4br0O0JHnS9c5i3eoh9Z8WdzomG_CRwp0P2AQfI2n9TvcOb33vEvYZNbjto8HatdjsBxztZmdd0qn37hKddfo92qvfPkXrxcN6_kSWL4_P89mSGEZlIq1pGqaF6awBS2VTlqJpDC8aWVSWGm4lCC2qshOCgy1rYJQa2ZpSUp3nbIpuxrVD8B97G5Pa-n1w-aIqBJc1q2opM1WM1PGPYDs1hH6nw5eioH5sqtGmyjbV0aY65BAbQzHDbmPD3-p_Ut_ko3hC</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guo, Yanfei</creator><creator>Peng, Yanjun</creator><creator>Zhang, Bin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1652-3861</orcidid></search><sort><creationdate>20210801</creationdate><title>CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation</title><author>Guo, Yanfei ; Peng, Yanjun ; Zhang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dcbb3a5cfec0e19b665bbc42b927e1c4e905a576f5540e680311c9dc691ae1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Alignment</topic><topic>Artificial Intelligence</topic><topic>Blindness</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Glaucoma</topic><topic>Image segmentation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Modules</topic><topic>Multilayers</topic><topic>Processes</topic><topic>Prototypes</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yanfei</creatorcontrib><creatorcontrib>Peng, Yanjun</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yanfei</au><au>Peng, Yanjun</au><au>Zhang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>51</volume><issue>8</issue><spage>5701</spage><epage>5725</epage><pages>5701-5725</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Glaucoma is a leading cause of blindness. Accurate and efficient segmentation of the optic disc and cup from fundus images is important for glaucoma screening. However, using off-the-shelf networks against new datasets may lead to degraded performances due to domain shift. To address this issue, in this paper, we propose a coarse-to-fine adaptive Faster R-CNN framework for cross-domain joint optic disc and cup segmentation. The proposed CAFR-CNN consists of the Faster R-CNN detector, a spatial attention-based region alignment module, a pyramid ROI alignment module and a prototype-based semantic alignment module. The Faster R-CNN detector extracts features from fundus images using a VGG16 network as a backbone. The spatial attention-based region alignment module extracts the region of interest through a spatial mechanism and aligns the feature distribution from different domains via multilayer adversarial learning to achieve a coarse-grained adaptation. The pyramid ROI alignment module learns multilevel contextual features to prevent misclassifications due to the similar appearances of the optic disc and cup. The prototype-based semantic alignment module minimizes the distance of global prototypes with the same category between the target domain and source domain to achieve a fine-grained adaptation. We evaluated the proposed CAFR-CNN framework under different scenarios constructed from four public retinal fundus image datasets (REFUGE2, DRISHTI-GS, DRIONS-DB and RIM-ONE-r3). The experimental results show that the proposed method outperforms the current state-of-the-art methods and has good accuracy and robustness: it not only avoids the adverse effects of low contrast and noise interference but also preserves the shape priors and generates more accurate contours.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-020-02145-w</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-1652-3861</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2021-08, Vol.51 (8), p.5701-5725
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2549837899
source Springer Nature - Complete Springer Journals
subjects Adaptation
Alignment
Artificial Intelligence
Blindness
Computer Science
Datasets
Domains
Feature extraction
Glaucoma
Image segmentation
Machines
Manufacturing
Mechanical Engineering
Modules
Multilayers
Processes
Prototypes
Semantics
title CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAFR-CNN:%20coarse-to-fine%20adaptive%20faster%20R-CNN%20for%20cross-domain%20joint%20optic%20disc%20and%20cup%20segmentation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Guo,%20Yanfei&rft.date=2021-08-01&rft.volume=51&rft.issue=8&rft.spage=5701&rft.epage=5725&rft.pages=5701-5725&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-020-02145-w&rft_dat=%3Cproquest_cross%3E2549837899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549837899&rft_id=info:pmid/&rfr_iscdi=true