Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite

In this study, micro-arc oxidation (MAO) coatings were prepared on a novel glass microsphere reinforced Mg alloy composite to retard the degradation of the composite in the liquid environment containing Cl − for degradable downhole tool applications. The microstructure and chemical composition of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-09, Vol.56 (27), p.15379-15396
Hauptverfasser: Liu, Lin, Yu, Sirong, Zhu, Guang, Li, Quan, Liu, Enyang, Xiong, Wei, Wang, Bingying, Yang, Xizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15396
container_issue 27
container_start_page 15379
container_title Journal of materials science
container_volume 56
creator Liu, Lin
Yu, Sirong
Zhu, Guang
Li, Quan
Liu, Enyang
Xiong, Wei
Wang, Bingying
Yang, Xizhen
description In this study, micro-arc oxidation (MAO) coatings were prepared on a novel glass microsphere reinforced Mg alloy composite to retard the degradation of the composite in the liquid environment containing Cl − for degradable downhole tool applications. The microstructure and chemical composition of the coatings were characterized by SEM, EDS, XPS and XRD. The growth characteristics of the MAO coatings on different matrix regions were analyzed. The corrosion and wear resistance of the coatings were evaluated through the immersion test, electrochemical measurements and friction test. Results showed that the MAO coatings consisted primarily of Mg 2 SiO 4 , MgO, little amount of MgAl 2 O 4 and amorphous SiO 2 . The current density influenced the thickness and structure via affecting the voltage response of the MAO process, afterward influencing the properties of the coatings. The termination voltage of the MAO process and thickness of the coatings increased with the current density. With the current density increased from 8 to 160 mA/cm 2 , the compactness and microhardness of the coatings were increased, thereby improving the corrosion and wear resistance of the coatings. However, as the current density increased to 200 mA/cm 2 , the generation of large through-cracks caused the friction coefficient to increase and the corrosion resistance to deteriorate.
doi_str_mv 10.1007/s10853-021-06252-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2549835433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668071915</galeid><sourcerecordid>A668071915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c6a6bfa0d8b0b14117badba542cf876a32e41bd7001a4d5698336eafe5ce27e13</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVIIJukf6AnQU89KBlJluw9hqVNFzYU8nEWY3nsOnitreSlu_--2rpQcik6jBDPoxnpZeyjhFsJUN4lCZXRApQUYJVR4njGFtKUWhQV6HO2AFBKqMLKS3aV0hsAmFLJBQurEGNIfRg5jg3_RRh5pNSnCUdPPLR82_sYBEbPw6FvcDqhPuQ6djxvuwFTmqG0-0GRst6PbYieGv7YcRyGcMzCdpe7THTDLlocEn34W6_Z69cvL6tvYvP9Yb263wivl2oS3qKtW4SmqqGWhZRljU2NplC-rUqLWlEh66YEkFg0xi4rrS1hS8aTKknqa_ZpvncXw889pcm9hX0cc0unTJFxU2idqduZ6nAgdxp7iujzaii_KIzU9vn83toKSrmUJguf3wmZmegwdbhPya2fn96zamZPX5MitW4X-y3Go5PgTqm5OTWXU3N_UnPHLOlZShkeO4r_5v6P9RvK5Zvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549835433</pqid></control><display><type>article</type><title>Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Lin ; Yu, Sirong ; Zhu, Guang ; Li, Quan ; Liu, Enyang ; Xiong, Wei ; Wang, Bingying ; Yang, Xizhen</creator><creatorcontrib>Liu, Lin ; Yu, Sirong ; Zhu, Guang ; Li, Quan ; Liu, Enyang ; Xiong, Wei ; Wang, Bingying ; Yang, Xizhen</creatorcontrib><description>In this study, micro-arc oxidation (MAO) coatings were prepared on a novel glass microsphere reinforced Mg alloy composite to retard the degradation of the composite in the liquid environment containing Cl − for degradable downhole tool applications. The microstructure and chemical composition of the coatings were characterized by SEM, EDS, XPS and XRD. The growth characteristics of the MAO coatings on different matrix regions were analyzed. The corrosion and wear resistance of the coatings were evaluated through the immersion test, electrochemical measurements and friction test. Results showed that the MAO coatings consisted primarily of Mg 2 SiO 4 , MgO, little amount of MgAl 2 O 4 and amorphous SiO 2 . The current density influenced the thickness and structure via affecting the voltage response of the MAO process, afterward influencing the properties of the coatings. The termination voltage of the MAO process and thickness of the coatings increased with the current density. With the current density increased from 8 to 160 mA/cm 2 , the compactness and microhardness of the coatings were increased, thereby improving the corrosion and wear resistance of the coatings. However, as the current density increased to 200 mA/cm 2 , the generation of large through-cracks caused the friction coefficient to increase and the corrosion resistance to deteriorate.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06252-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Classical Mechanics ; Coefficient of friction ; Corrosion ; Corrosion and anti-corrosives ; Corrosion resistance ; Corrosive wear ; Crystallography and Scattering Methods ; Current density ; Electric potential ; Immersion tests (corrosion) ; Magnesium base alloys ; Materials Science ; Metals &amp; Corrosion ; Microhardness ; Oxidation ; Oxidation resistance ; Polymer Sciences ; Protective coatings ; Silicon dioxide ; Solid Mechanics ; Specialty metals industry ; Thickness ; Voltage ; Wear resistance ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science, 2021-09, Vol.56 (27), p.15379-15396</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c6a6bfa0d8b0b14117badba542cf876a32e41bd7001a4d5698336eafe5ce27e13</citedby><cites>FETCH-LOGICAL-c392t-c6a6bfa0d8b0b14117badba542cf876a32e41bd7001a4d5698336eafe5ce27e13</cites><orcidid>0000-0001-7439-1751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06252-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06252-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Yu, Sirong</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Liu, Enyang</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Wang, Bingying</creatorcontrib><creatorcontrib>Yang, Xizhen</creatorcontrib><title>Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In this study, micro-arc oxidation (MAO) coatings were prepared on a novel glass microsphere reinforced Mg alloy composite to retard the degradation of the composite in the liquid environment containing Cl − for degradable downhole tool applications. The microstructure and chemical composition of the coatings were characterized by SEM, EDS, XPS and XRD. The growth characteristics of the MAO coatings on different matrix regions were analyzed. The corrosion and wear resistance of the coatings were evaluated through the immersion test, electrochemical measurements and friction test. Results showed that the MAO coatings consisted primarily of Mg 2 SiO 4 , MgO, little amount of MgAl 2 O 4 and amorphous SiO 2 . The current density influenced the thickness and structure via affecting the voltage response of the MAO process, afterward influencing the properties of the coatings. The termination voltage of the MAO process and thickness of the coatings increased with the current density. With the current density increased from 8 to 160 mA/cm 2 , the compactness and microhardness of the coatings were increased, thereby improving the corrosion and wear resistance of the coatings. However, as the current density increased to 200 mA/cm 2 , the generation of large through-cracks caused the friction coefficient to increase and the corrosion resistance to deteriorate.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coefficient of friction</subject><subject>Corrosion</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Corrosive wear</subject><subject>Crystallography and Scattering Methods</subject><subject>Current density</subject><subject>Electric potential</subject><subject>Immersion tests (corrosion)</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Metals &amp; Corrosion</subject><subject>Microhardness</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Polymer Sciences</subject><subject>Protective coatings</subject><subject>Silicon dioxide</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Thickness</subject><subject>Voltage</subject><subject>Wear resistance</subject><subject>X ray photoelectron spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhkVIIJukf6AnQU89KBlJluw9hqVNFzYU8nEWY3nsOnitreSlu_--2rpQcik6jBDPoxnpZeyjhFsJUN4lCZXRApQUYJVR4njGFtKUWhQV6HO2AFBKqMLKS3aV0hsAmFLJBQurEGNIfRg5jg3_RRh5pNSnCUdPPLR82_sYBEbPw6FvcDqhPuQ6djxvuwFTmqG0-0GRst6PbYieGv7YcRyGcMzCdpe7THTDLlocEn34W6_Z69cvL6tvYvP9Yb263wivl2oS3qKtW4SmqqGWhZRljU2NplC-rUqLWlEh66YEkFg0xi4rrS1hS8aTKknqa_ZpvncXw889pcm9hX0cc0unTJFxU2idqduZ6nAgdxp7iujzaii_KIzU9vn83toKSrmUJguf3wmZmegwdbhPya2fn96zamZPX5MitW4X-y3Go5PgTqm5OTWXU3N_UnPHLOlZShkeO4r_5v6P9RvK5Zvo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Lin</creator><creator>Yu, Sirong</creator><creator>Zhu, Guang</creator><creator>Li, Quan</creator><creator>Liu, Enyang</creator><creator>Xiong, Wei</creator><creator>Wang, Bingying</creator><creator>Yang, Xizhen</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7439-1751</orcidid></search><sort><creationdate>20210901</creationdate><title>Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite</title><author>Liu, Lin ; Yu, Sirong ; Zhu, Guang ; Li, Quan ; Liu, Enyang ; Xiong, Wei ; Wang, Bingying ; Yang, Xizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c6a6bfa0d8b0b14117badba542cf876a32e41bd7001a4d5698336eafe5ce27e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coefficient of friction</topic><topic>Corrosion</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Corrosive wear</topic><topic>Crystallography and Scattering Methods</topic><topic>Current density</topic><topic>Electric potential</topic><topic>Immersion tests (corrosion)</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Metals &amp; Corrosion</topic><topic>Microhardness</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Polymer Sciences</topic><topic>Protective coatings</topic><topic>Silicon dioxide</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Thickness</topic><topic>Voltage</topic><topic>Wear resistance</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Yu, Sirong</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Liu, Enyang</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Wang, Bingying</creatorcontrib><creatorcontrib>Yang, Xizhen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lin</au><au>Yu, Sirong</au><au>Zhu, Guang</au><au>Li, Quan</au><au>Liu, Enyang</au><au>Xiong, Wei</au><au>Wang, Bingying</au><au>Yang, Xizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>56</volume><issue>27</issue><spage>15379</spage><epage>15396</epage><pages>15379-15396</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this study, micro-arc oxidation (MAO) coatings were prepared on a novel glass microsphere reinforced Mg alloy composite to retard the degradation of the composite in the liquid environment containing Cl − for degradable downhole tool applications. The microstructure and chemical composition of the coatings were characterized by SEM, EDS, XPS and XRD. The growth characteristics of the MAO coatings on different matrix regions were analyzed. The corrosion and wear resistance of the coatings were evaluated through the immersion test, electrochemical measurements and friction test. Results showed that the MAO coatings consisted primarily of Mg 2 SiO 4 , MgO, little amount of MgAl 2 O 4 and amorphous SiO 2 . The current density influenced the thickness and structure via affecting the voltage response of the MAO process, afterward influencing the properties of the coatings. The termination voltage of the MAO process and thickness of the coatings increased with the current density. With the current density increased from 8 to 160 mA/cm 2 , the compactness and microhardness of the coatings were increased, thereby improving the corrosion and wear resistance of the coatings. However, as the current density increased to 200 mA/cm 2 , the generation of large through-cracks caused the friction coefficient to increase and the corrosion resistance to deteriorate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06252-y</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7439-1751</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-09, Vol.56 (27), p.15379-15396
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2549835433
source Springer Nature - Complete Springer Journals
subjects Alloys
Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Classical Mechanics
Coefficient of friction
Corrosion
Corrosion and anti-corrosives
Corrosion resistance
Corrosive wear
Crystallography and Scattering Methods
Current density
Electric potential
Immersion tests (corrosion)
Magnesium base alloys
Materials Science
Metals & Corrosion
Microhardness
Oxidation
Oxidation resistance
Polymer Sciences
Protective coatings
Silicon dioxide
Solid Mechanics
Specialty metals industry
Thickness
Voltage
Wear resistance
X ray photoelectron spectroscopy
title Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20and%20wear%20resistance%20of%20micro-arc%20oxidation%20coating%20on%20glass%20microsphere%20reinforced%20Mg%20alloy%20composite&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20Lin&rft.date=2021-09-01&rft.volume=56&rft.issue=27&rft.spage=15379&rft.epage=15396&rft.pages=15379-15396&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06252-y&rft_dat=%3Cgale_proqu%3EA668071915%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549835433&rft_id=info:pmid/&rft_galeid=A668071915&rfr_iscdi=true